Metamath Proof Explorer


Theorem frlmlbs

Description: The unit vectors comprise a basis for a free module. (Contributed by Stefan O'Rear, 6-Feb-2015) (Proof shortened by AV, 21-Jul-2019)

Ref Expression
Hypotheses frlmlbs.f F=RfreeLModI
frlmlbs.u U=RunitVecI
frlmlbs.j J=LBasisF
Assertion frlmlbs RRingIVranUJ

Proof

Step Hyp Ref Expression
1 frlmlbs.f F=RfreeLModI
2 frlmlbs.u U=RunitVecI
3 frlmlbs.j J=LBasisF
4 eqid BaseF=BaseF
5 2 1 4 uvcff RRingIVU:IBaseF
6 5 frnd RRingIVranUBaseF
7 suppssdm asupp0Rdoma
8 eqid BaseR=BaseR
9 1 8 4 frlmbasf IVaBaseFa:IBaseR
10 9 adantll RRingIVaBaseFa:IBaseR
11 7 10 fssdm RRingIVaBaseFasupp0RI
12 11 ralrimiva RRingIVaBaseFasupp0RI
13 rabid2 BaseF=aBaseF|asupp0RIaBaseFasupp0RI
14 12 13 sylibr RRingIVBaseF=aBaseF|asupp0RI
15 ssid II
16 eqid LSpanF=LSpanF
17 eqid 0R=0R
18 eqid aBaseF|asupp0RI=aBaseF|asupp0RI
19 1 2 16 4 17 18 frlmsslsp RRingIVIILSpanFUI=aBaseF|asupp0RI
20 15 19 mp3an3 RRingIVLSpanFUI=aBaseF|asupp0RI
21 ffn U:IBaseFUFnI
22 fnima UFnIUI=ranU
23 5 21 22 3syl RRingIVUI=ranU
24 23 fveq2d RRingIVLSpanFUI=LSpanFranU
25 14 20 24 3eqtr2rd RRingIVLSpanFranU=BaseF
26 eqid F=F
27 eqid aBaseF|asupp0RIc=aBaseF|asupp0RIc
28 simpll RRingIVcIbBaseScalarF0ScalarFRRing
29 simplr RRingIVcIbBaseScalarF0ScalarFIV
30 difssd RRingIVcIbBaseScalarF0ScalarFIcI
31 vsnid cc
32 snssi cIcI
33 32 ad2antrl RRingIVcIbBaseScalarF0ScalarFcI
34 dfss4 cIIIc=c
35 33 34 sylib RRingIVcIbBaseScalarF0ScalarFIIc=c
36 31 35 eleqtrrid RRingIVcIbBaseScalarF0ScalarFcIIc
37 1 frlmsca RRingIVR=ScalarF
38 37 fveq2d RRingIVBaseR=BaseScalarF
39 37 fveq2d RRingIV0R=0ScalarF
40 39 sneqd RRingIV0R=0ScalarF
41 38 40 difeq12d RRingIVBaseR0R=BaseScalarF0ScalarF
42 41 eleq2d RRingIVbBaseR0RbBaseScalarF0ScalarF
43 42 biimpar RRingIVbBaseScalarF0ScalarFbBaseR0R
44 43 adantrl RRingIVcIbBaseScalarF0ScalarFbBaseR0R
45 1 2 4 8 26 17 27 28 29 30 36 44 frlmssuvc2 RRingIVcIbBaseScalarF0ScalarF¬bFUcaBaseF|asupp0RIc
46 17 8 ringelnzr RRingbBaseR0RRNzRing
47 28 44 46 syl2anc RRingIVcIbBaseScalarF0ScalarFRNzRing
48 2 1 4 uvcf1 RNzRingIVU:I1-1BaseF
49 47 29 48 syl2anc RRingIVcIbBaseScalarF0ScalarFU:I1-1BaseF
50 df-f1 U:I1-1BaseFU:IBaseFFunU-1
51 50 simprbi U:I1-1BaseFFunU-1
52 imadif FunU-1UIc=UIUc
53 49 51 52 3syl RRingIVcIbBaseScalarF0ScalarFUIc=UIUc
54 f1fn U:I1-1BaseFUFnI
55 49 54 22 3syl RRingIVcIbBaseScalarF0ScalarFUI=ranU
56 49 54 syl RRingIVcIbBaseScalarF0ScalarFUFnI
57 simprl RRingIVcIbBaseScalarF0ScalarFcI
58 fnsnfv UFnIcIUc=Uc
59 56 57 58 syl2anc RRingIVcIbBaseScalarF0ScalarFUc=Uc
60 59 eqcomd RRingIVcIbBaseScalarF0ScalarFUc=Uc
61 55 60 difeq12d RRingIVcIbBaseScalarF0ScalarFUIUc=ranUUc
62 53 61 eqtr2d RRingIVcIbBaseScalarF0ScalarFranUUc=UIc
63 62 fveq2d RRingIVcIbBaseScalarF0ScalarFLSpanFranUUc=LSpanFUIc
64 1 2 16 4 17 27 frlmsslsp RRingIVIcILSpanFUIc=aBaseF|asupp0RIc
65 28 29 30 64 syl3anc RRingIVcIbBaseScalarF0ScalarFLSpanFUIc=aBaseF|asupp0RIc
66 63 65 eqtrd RRingIVcIbBaseScalarF0ScalarFLSpanFranUUc=aBaseF|asupp0RIc
67 45 66 neleqtrrd RRingIVcIbBaseScalarF0ScalarF¬bFUcLSpanFranUUc
68 67 ralrimivva RRingIVcIbBaseScalarF0ScalarF¬bFUcLSpanFranUUc
69 oveq2 a=UcbFa=bFUc
70 sneq a=Uca=Uc
71 70 difeq2d a=UcranUa=ranUUc
72 71 fveq2d a=UcLSpanFranUa=LSpanFranUUc
73 69 72 eleq12d a=UcbFaLSpanFranUabFUcLSpanFranUUc
74 73 notbid a=Uc¬bFaLSpanFranUa¬bFUcLSpanFranUUc
75 74 ralbidv a=UcbBaseScalarF0ScalarF¬bFaLSpanFranUabBaseScalarF0ScalarF¬bFUcLSpanFranUUc
76 75 ralrn UFnIaranUbBaseScalarF0ScalarF¬bFaLSpanFranUacIbBaseScalarF0ScalarF¬bFUcLSpanFranUUc
77 5 21 76 3syl RRingIVaranUbBaseScalarF0ScalarF¬bFaLSpanFranUacIbBaseScalarF0ScalarF¬bFUcLSpanFranUUc
78 68 77 mpbird RRingIVaranUbBaseScalarF0ScalarF¬bFaLSpanFranUa
79 1 ovexi FV
80 eqid ScalarF=ScalarF
81 eqid BaseScalarF=BaseScalarF
82 eqid 0ScalarF=0ScalarF
83 4 80 26 81 3 16 82 islbs FVranUJranUBaseFLSpanFranU=BaseFaranUbBaseScalarF0ScalarF¬bFaLSpanFranUa
84 79 83 ax-mp ranUJranUBaseFLSpanFranU=BaseFaranUbBaseScalarF0ScalarF¬bFaLSpanFranUa
85 6 25 78 84 syl3anbrc RRingIVranUJ