Metamath Proof Explorer


Theorem fsumcn

Description: A finite sum of functions to complex numbers from a common topological space is continuous. The class expression for B normally contains free variables k and x to index it. (Contributed by NM, 8-Aug-2007) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses fsumcn.3 K=TopOpenfld
fsumcn.4 φJTopOnX
fsumcn.5 φAFin
fsumcn.6 φkAxXBJCnK
Assertion fsumcn φxXkABJCnK

Proof

Step Hyp Ref Expression
1 fsumcn.3 K=TopOpenfld
2 fsumcn.4 φJTopOnX
3 fsumcn.5 φAFin
4 fsumcn.6 φkAxXBJCnK
5 ssid AA
6 sseq1 w=wAA
7 sumeq1 w=kwB=kB
8 7 mpteq2dv w=xXkwB=xXkB
9 8 eleq1d w=xXkwBJCnKxXkBJCnK
10 6 9 imbi12d w=wAxXkwBJCnKAxXkBJCnK
11 10 imbi2d w=φwAxXkwBJCnKφAxXkBJCnK
12 sseq1 w=ywAyA
13 sumeq1 w=ykwB=kyB
14 13 mpteq2dv w=yxXkwB=xXkyB
15 14 eleq1d w=yxXkwBJCnKxXkyBJCnK
16 12 15 imbi12d w=ywAxXkwBJCnKyAxXkyBJCnK
17 16 imbi2d w=yφwAxXkwBJCnKφyAxXkyBJCnK
18 sseq1 w=yzwAyzA
19 sumeq1 w=yzkwB=kyzB
20 19 mpteq2dv w=yzxXkwB=xXkyzB
21 20 eleq1d w=yzxXkwBJCnKxXkyzBJCnK
22 18 21 imbi12d w=yzwAxXkwBJCnKyzAxXkyzBJCnK
23 22 imbi2d w=yzφwAxXkwBJCnKφyzAxXkyzBJCnK
24 sseq1 w=AwAAA
25 sumeq1 w=AkwB=kAB
26 25 mpteq2dv w=AxXkwB=xXkAB
27 26 eleq1d w=AxXkwBJCnKxXkABJCnK
28 24 27 imbi12d w=AwAxXkwBJCnKAAxXkABJCnK
29 28 imbi2d w=AφwAxXkwBJCnKφAAxXkABJCnK
30 sum0 kB=0
31 30 mpteq2i xXkB=xX0
32 1 cnfldtopon KTopOn
33 32 a1i φKTopOn
34 0cnd φ0
35 2 33 34 cnmptc φxX0JCnK
36 31 35 eqeltrid φxXkBJCnK
37 36 a1d φAxXkBJCnK
38 ssun1 yyz
39 sstr yyzyzAyA
40 38 39 mpan yzAyA
41 40 imim1i yAxXkyBJCnKyzAxXkyBJCnK
42 simplr φ¬zyyzAxX¬zy
43 disjsn yz=¬zy
44 42 43 sylibr φ¬zyyzAxXyz=
45 eqidd φ¬zyyzAxXyz=yz
46 3 ad2antrr φ¬zyyzAxXAFin
47 simprl φ¬zyyzAxXyzA
48 46 47 ssfid φ¬zyyzAxXyzFin
49 simplll φ¬zyyzAxXkyzφ
50 47 sselda φ¬zyyzAxXkyzkA
51 simplrr φ¬zyyzAxXkyzxX
52 2 adantr φkAJTopOnX
53 32 a1i φkAKTopOn
54 cnf2 JTopOnXKTopOnxXBJCnKxXB:X
55 52 53 4 54 syl3anc φkAxXB:X
56 eqid xXB=xXB
57 56 fmpt xXBxXB:X
58 55 57 sylibr φkAxXB
59 rsp xXBxXB
60 58 59 syl φkAxXB
61 60 imp φkAxXB
62 49 50 51 61 syl21anc φ¬zyyzAxXkyzB
63 44 45 48 62 fsumsplit φ¬zyyzAxXkyzB=kyB+kzB
64 simpr φ¬zyyzAyzA
65 64 unssbd φ¬zyyzAzA
66 vex zV
67 66 snss zAzA
68 65 67 sylibr φ¬zyyzAzA
69 68 adantrr φ¬zyyzAxXzA
70 60 impancom φxXkAB
71 70 ralrimiv φxXkAB
72 71 ad2ant2rl φ¬zyyzAxXkAB
73 nfcsb1v _kz/kB
74 73 nfel1 kz/kB
75 csbeq1a k=zB=z/kB
76 75 eleq1d k=zBz/kB
77 74 76 rspc zAkABz/kB
78 69 72 77 sylc φ¬zyyzAxXz/kB
79 sumsns zAz/kBkzB=z/kB
80 69 78 79 syl2anc φ¬zyyzAxXkzB=z/kB
81 80 oveq2d φ¬zyyzAxXkyB+kzB=kyB+z/kB
82 63 81 eqtrd φ¬zyyzAxXkyzB=kyB+z/kB
83 82 anassrs φ¬zyyzAxXkyzB=kyB+z/kB
84 83 mpteq2dva φ¬zyyzAxXkyzB=xXkyB+z/kB
85 84 adantrr φ¬zyyzAxXkyBJCnKxXkyzB=xXkyB+z/kB
86 nfcv _wkyB+z/kB
87 nfcv _xy
88 nfcsb1v _xw/xB
89 87 88 nfsum _xkyw/xB
90 nfcv _x+
91 nfcv _xz
92 91 88 nfcsbw _xz/kw/xB
93 89 90 92 nfov _xkyw/xB+z/kw/xB
94 csbeq1a x=wB=w/xB
95 94 sumeq2sdv x=wkyB=kyw/xB
96 94 csbeq2dv x=wz/kB=z/kw/xB
97 95 96 oveq12d x=wkyB+z/kB=kyw/xB+z/kw/xB
98 86 93 97 cbvmpt xXkyB+z/kB=wXkyw/xB+z/kw/xB
99 85 98 eqtrdi φ¬zyyzAxXkyBJCnKxXkyzB=wXkyw/xB+z/kw/xB
100 2 ad2antrr φ¬zyyzAxXkyBJCnKJTopOnX
101 nfcv _wkyB
102 101 89 95 cbvmpt xXkyB=wXkyw/xB
103 simprr φ¬zyyzAxXkyBJCnKxXkyBJCnK
104 102 103 eqeltrrid φ¬zyyzAxXkyBJCnKwXkyw/xBJCnK
105 nfcv _wz/kB
106 105 92 96 cbvmpt xXz/kB=wXz/kw/xB
107 68 adantrr φ¬zyyzAxXkyBJCnKzA
108 4 ralrimiva φkAxXBJCnK
109 108 ad2antrr φ¬zyyzAxXkyBJCnKkAxXBJCnK
110 nfcv _kX
111 110 73 nfmpt _kxXz/kB
112 111 nfel1 kxXz/kBJCnK
113 75 mpteq2dv k=zxXB=xXz/kB
114 113 eleq1d k=zxXBJCnKxXz/kBJCnK
115 112 114 rspc zAkAxXBJCnKxXz/kBJCnK
116 107 109 115 sylc φ¬zyyzAxXkyBJCnKxXz/kBJCnK
117 106 116 eqeltrrid φ¬zyyzAxXkyBJCnKwXz/kw/xBJCnK
118 1 addcn +K×tKCnK
119 118 a1i φ¬zyyzAxXkyBJCnK+K×tKCnK
120 100 104 117 119 cnmpt12f φ¬zyyzAxXkyBJCnKwXkyw/xB+z/kw/xBJCnK
121 99 120 eqeltrd φ¬zyyzAxXkyBJCnKxXkyzBJCnK
122 121 exp32 φ¬zyyzAxXkyBJCnKxXkyzBJCnK
123 122 a2d φ¬zyyzAxXkyBJCnKyzAxXkyzBJCnK
124 41 123 syl5 φ¬zyyAxXkyBJCnKyzAxXkyzBJCnK
125 124 expcom ¬zyφyAxXkyBJCnKyzAxXkyzBJCnK
126 125 adantl yFin¬zyφyAxXkyBJCnKyzAxXkyzBJCnK
127 126 a2d yFin¬zyφyAxXkyBJCnKφyzAxXkyzBJCnK
128 11 17 23 29 37 127 findcard2s AFinφAAxXkABJCnK
129 3 128 mpcom φAAxXkABJCnK
130 5 129 mpi φxXkABJCnK