Metamath Proof Explorer


Theorem funcrngcsetc

Description: The "natural forgetful functor" from the category of non-unital rings into the category of sets which sends each non-unital ring to its underlying set (base set) and the morphisms (non-unital ring homomorphisms) to mappings of the corresponding base sets. An alternate proof is provided in funcrngcsetcALT , using cofuval2 to construct the "natural forgetful functor" from the category of non-unital rings into the category of sets by composing the "inclusion functor" from the category of non-unital rings into the category of extensible structures, see rngcifuestrc , and the "natural forgetful functor" from the category of extensible structures into the category of sets, see funcestrcsetc . (Contributed by AV, 26-Mar-2020)

Ref Expression
Hypotheses funcrngcsetc.r R = RngCat U
funcrngcsetc.s S = SetCat U
funcrngcsetc.b B = Base R
funcrngcsetc.u φ U WUni
funcrngcsetc.f φ F = x B Base x
funcrngcsetc.g φ G = x B , y B I x RngHomo y
Assertion funcrngcsetc φ F R Func S G

Proof

Step Hyp Ref Expression
1 funcrngcsetc.r R = RngCat U
2 funcrngcsetc.s S = SetCat U
3 funcrngcsetc.b B = Base R
4 funcrngcsetc.u φ U WUni
5 funcrngcsetc.f φ F = x B Base x
6 funcrngcsetc.g φ G = x B , y B I x RngHomo y
7 eqid ExtStrCat U = ExtStrCat U
8 eqid Base ExtStrCat U = Base ExtStrCat U
9 eqid Base S = Base S
10 7 4 estrcbas φ U = Base ExtStrCat U
11 10 mpteq1d φ x U Base x = x Base ExtStrCat U Base x
12 mpoeq12 U = Base ExtStrCat U U = Base ExtStrCat U x U , y U I Base y Base x = x Base ExtStrCat U , y Base ExtStrCat U I Base y Base x
13 10 10 12 syl2anc φ x U , y U I Base y Base x = x Base ExtStrCat U , y Base ExtStrCat U I Base y Base x
14 7 2 8 9 4 11 13 funcestrcsetc φ x U Base x ExtStrCat U Func S x U , y U I Base y Base x
15 df-br x U Base x ExtStrCat U Func S x U , y U I Base y Base x x U Base x x U , y U I Base y Base x ExtStrCat U Func S
16 14 15 sylib φ x U Base x x U , y U I Base y Base x ExtStrCat U Func S
17 eqid Base R = Base R
18 1 17 4 rngcbas φ Base R = U Rng
19 incom U Rng = Rng U
20 18 19 eqtrdi φ Base R = Rng U
21 eqid Hom R = Hom R
22 1 17 4 21 rngchomfval φ Hom R = RngHomo Base R × Base R
23 7 4 20 22 rnghmsubcsetc φ Hom R Subcat ExtStrCat U
24 16 23 funcres φ x U Base x x U , y U I Base y Base x f Hom R ExtStrCat U cat Hom R Func S
25 mptexg U WUni x U Base x V
26 4 25 syl φ x U Base x V
27 fvex Hom R V
28 27 a1i φ Hom R V
29 mpoexga U WUni U WUni x U , y U I Base y Base x V
30 4 4 29 syl2anc φ x U , y U I Base y Base x V
31 18 22 rnghmresfn φ Hom R Fn Base R × Base R
32 26 28 30 31 resfval2 φ x U Base x x U , y U I Base y Base x f Hom R = x U Base x Base R a Base R , b Base R a x U , y U I Base y Base x b a Hom R b
33 inss1 U Rng U
34 18 33 eqsstrdi φ Base R U
35 34 resmptd φ x U Base x Base R = x Base R Base x
36 3 a1i φ B = Base R
37 36 mpteq1d φ x B Base x = x Base R Base x
38 5 37 eqtr2d φ x Base R Base x = F
39 35 38 eqtrd φ x U Base x Base R = F
40 oveq1 x = a x RngHomo y = a RngHomo y
41 40 reseq2d x = a I x RngHomo y = I a RngHomo y
42 oveq2 y = b a RngHomo y = a RngHomo b
43 42 reseq2d y = b I a RngHomo y = I a RngHomo b
44 41 43 cbvmpov x B , y B I x RngHomo y = a B , b B I a RngHomo b
45 44 a1i φ x B , y B I x RngHomo y = a B , b B I a RngHomo b
46 3 a1i φ a B B = Base R
47 eqidd φ a B b B x U , y U I Base y Base x = x U , y U I Base y Base x
48 fveq2 y = b Base y = Base b
49 fveq2 x = a Base x = Base a
50 48 49 oveqan12rd x = a y = b Base y Base x = Base b Base a
51 50 reseq2d x = a y = b I Base y Base x = I Base b Base a
52 51 adantl φ a B b B x = a y = b I Base y Base x = I Base b Base a
53 3 34 eqsstrid φ B U
54 53 sseld φ a B a U
55 54 com12 a B φ a U
56 55 adantr a B b B φ a U
57 56 impcom φ a B b B a U
58 53 sseld φ b B b U
59 58 adantld φ a B b B b U
60 59 imp φ a B b B b U
61 ovexd φ a B b B Base b Base a V
62 61 resiexd φ a B b B I Base b Base a V
63 47 52 57 60 62 ovmpod φ a B b B a x U , y U I Base y Base x b = I Base b Base a
64 63 reseq1d φ a B b B a x U , y U I Base y Base x b a Hom R b = I Base b Base a a Hom R b
65 4 adantr φ a B b B U WUni
66 simprl φ a B b B a B
67 simprr φ a B b B b B
68 1 3 65 21 66 67 rngchom φ a B b B a Hom R b = a RngHomo b
69 68 reseq2d φ a B b B I Base b Base a a Hom R b = I Base b Base a a RngHomo b
70 eqid Base a = Base a
71 eqid Base b = Base b
72 70 71 rnghmf f a RngHomo b f : Base a Base b
73 fvex Base b V
74 fvex Base a V
75 73 74 pm3.2i Base b V Base a V
76 75 a1i φ a B b B Base b V Base a V
77 elmapg Base b V Base a V f Base b Base a f : Base a Base b
78 76 77 syl φ a B b B f Base b Base a f : Base a Base b
79 72 78 syl5ibr φ a B b B f a RngHomo b f Base b Base a
80 79 ssrdv φ a B b B a RngHomo b Base b Base a
81 80 resabs1d φ a B b B I Base b Base a a RngHomo b = I a RngHomo b
82 64 69 81 3eqtrrd φ a B b B I a RngHomo b = a x U , y U I Base y Base x b a Hom R b
83 36 46 82 mpoeq123dva φ a B , b B I a RngHomo b = a Base R , b Base R a x U , y U I Base y Base x b a Hom R b
84 6 45 83 3eqtrrd φ a Base R , b Base R a x U , y U I Base y Base x b a Hom R b = G
85 39 84 opeq12d φ x U Base x Base R a Base R , b Base R a x U , y U I Base y Base x b a Hom R b = F G
86 32 85 eqtr2d φ F G = x U Base x x U , y U I Base y Base x f Hom R
87 1 4 18 22 rngcval φ R = ExtStrCat U cat Hom R
88 87 oveq1d φ R Func S = ExtStrCat U cat Hom R Func S
89 24 86 88 3eltr4d φ F G R Func S
90 df-br F R Func S G F G R Func S
91 89 90 sylibr φ F R Func S G