Metamath Proof Explorer


Theorem funcrngcsetc

Description: The "natural forgetful functor" from the category of non-unital rings into the category of sets which sends each non-unital ring to its underlying set (base set) and the morphisms (non-unital ring homomorphisms) to mappings of the corresponding base sets. An alternate proof is provided in funcrngcsetcALT , using cofuval2 to construct the "natural forgetful functor" from the category of non-unital rings into the category of sets by composing the "inclusion functor" from the category of non-unital rings into the category of extensible structures, see rngcifuestrc , and the "natural forgetful functor" from the category of extensible structures into the category of sets, see funcestrcsetc . (Contributed by AV, 26-Mar-2020)

Ref Expression
Hypotheses funcrngcsetc.r R=RngCatU
funcrngcsetc.s S=SetCatU
funcrngcsetc.b B=BaseR
funcrngcsetc.u φUWUni
funcrngcsetc.f φF=xBBasex
funcrngcsetc.g φG=xB,yBIxRngHomoy
Assertion funcrngcsetc φFRFuncSG

Proof

Step Hyp Ref Expression
1 funcrngcsetc.r R=RngCatU
2 funcrngcsetc.s S=SetCatU
3 funcrngcsetc.b B=BaseR
4 funcrngcsetc.u φUWUni
5 funcrngcsetc.f φF=xBBasex
6 funcrngcsetc.g φG=xB,yBIxRngHomoy
7 eqid ExtStrCatU=ExtStrCatU
8 eqid BaseExtStrCatU=BaseExtStrCatU
9 eqid BaseS=BaseS
10 7 4 estrcbas φU=BaseExtStrCatU
11 10 mpteq1d φxUBasex=xBaseExtStrCatUBasex
12 mpoeq12 U=BaseExtStrCatUU=BaseExtStrCatUxU,yUIBaseyBasex=xBaseExtStrCatU,yBaseExtStrCatUIBaseyBasex
13 10 10 12 syl2anc φxU,yUIBaseyBasex=xBaseExtStrCatU,yBaseExtStrCatUIBaseyBasex
14 7 2 8 9 4 11 13 funcestrcsetc φxUBasexExtStrCatUFuncSxU,yUIBaseyBasex
15 df-br xUBasexExtStrCatUFuncSxU,yUIBaseyBasexxUBasexxU,yUIBaseyBasexExtStrCatUFuncS
16 14 15 sylib φxUBasexxU,yUIBaseyBasexExtStrCatUFuncS
17 eqid BaseR=BaseR
18 1 17 4 rngcbas φBaseR=URng
19 incom URng=RngU
20 18 19 eqtrdi φBaseR=RngU
21 eqid HomR=HomR
22 1 17 4 21 rngchomfval φHomR=RngHomoBaseR×BaseR
23 7 4 20 22 rnghmsubcsetc φHomRSubcatExtStrCatU
24 16 23 funcres φxUBasexxU,yUIBaseyBasexfHomRExtStrCatUcatHomRFuncS
25 mptexg UWUnixUBasexV
26 4 25 syl φxUBasexV
27 fvex HomRV
28 27 a1i φHomRV
29 mpoexga UWUniUWUnixU,yUIBaseyBasexV
30 4 4 29 syl2anc φxU,yUIBaseyBasexV
31 18 22 rnghmresfn φHomRFnBaseR×BaseR
32 26 28 30 31 resfval2 φxUBasexxU,yUIBaseyBasexfHomR=xUBasexBaseRaBaseR,bBaseRaxU,yUIBaseyBasexbaHomRb
33 inss1 URngU
34 18 33 eqsstrdi φBaseRU
35 34 resmptd φxUBasexBaseR=xBaseRBasex
36 3 a1i φB=BaseR
37 36 mpteq1d φxBBasex=xBaseRBasex
38 5 37 eqtr2d φxBaseRBasex=F
39 35 38 eqtrd φxUBasexBaseR=F
40 oveq1 x=axRngHomoy=aRngHomoy
41 40 reseq2d x=aIxRngHomoy=IaRngHomoy
42 oveq2 y=baRngHomoy=aRngHomob
43 42 reseq2d y=bIaRngHomoy=IaRngHomob
44 41 43 cbvmpov xB,yBIxRngHomoy=aB,bBIaRngHomob
45 44 a1i φxB,yBIxRngHomoy=aB,bBIaRngHomob
46 3 a1i φaBB=BaseR
47 eqidd φaBbBxU,yUIBaseyBasex=xU,yUIBaseyBasex
48 fveq2 y=bBasey=Baseb
49 fveq2 x=aBasex=Basea
50 48 49 oveqan12rd x=ay=bBaseyBasex=BasebBasea
51 50 reseq2d x=ay=bIBaseyBasex=IBasebBasea
52 51 adantl φaBbBx=ay=bIBaseyBasex=IBasebBasea
53 3 34 eqsstrid φBU
54 53 sseld φaBaU
55 54 com12 aBφaU
56 55 adantr aBbBφaU
57 56 impcom φaBbBaU
58 53 sseld φbBbU
59 58 adantld φaBbBbU
60 59 imp φaBbBbU
61 ovexd φaBbBBasebBaseaV
62 61 resiexd φaBbBIBasebBaseaV
63 47 52 57 60 62 ovmpod φaBbBaxU,yUIBaseyBasexb=IBasebBasea
64 63 reseq1d φaBbBaxU,yUIBaseyBasexbaHomRb=IBasebBaseaaHomRb
65 4 adantr φaBbBUWUni
66 simprl φaBbBaB
67 simprr φaBbBbB
68 1 3 65 21 66 67 rngchom φaBbBaHomRb=aRngHomob
69 68 reseq2d φaBbBIBasebBaseaaHomRb=IBasebBaseaaRngHomob
70 eqid Basea=Basea
71 eqid Baseb=Baseb
72 70 71 rnghmf faRngHomobf:BaseaBaseb
73 fvex BasebV
74 fvex BaseaV
75 73 74 pm3.2i BasebVBaseaV
76 75 a1i φaBbBBasebVBaseaV
77 elmapg BasebVBaseaVfBasebBaseaf:BaseaBaseb
78 76 77 syl φaBbBfBasebBaseaf:BaseaBaseb
79 72 78 imbitrrid φaBbBfaRngHomobfBasebBasea
80 79 ssrdv φaBbBaRngHomobBasebBasea
81 80 resabs1d φaBbBIBasebBaseaaRngHomob=IaRngHomob
82 64 69 81 3eqtrrd φaBbBIaRngHomob=axU,yUIBaseyBasexbaHomRb
83 36 46 82 mpoeq123dva φaB,bBIaRngHomob=aBaseR,bBaseRaxU,yUIBaseyBasexbaHomRb
84 6 45 83 3eqtrrd φaBaseR,bBaseRaxU,yUIBaseyBasexbaHomRb=G
85 39 84 opeq12d φxUBasexBaseRaBaseR,bBaseRaxU,yUIBaseyBasexbaHomRb=FG
86 32 85 eqtr2d φFG=xUBasexxU,yUIBaseyBasexfHomR
87 1 4 18 22 rngcval φR=ExtStrCatUcatHomR
88 87 oveq1d φRFuncS=ExtStrCatUcatHomRFuncS
89 24 86 88 3eltr4d φFGRFuncS
90 df-br FRFuncSGFGRFuncS
91 89 90 sylibr φFRFuncSG