Metamath Proof Explorer


Theorem fvineqsneu

Description: A theorem about functions where the image of every point intersects the domain only at that point. (Contributed by ML, 27-Mar-2021)

Ref Expression
Assertion fvineqsneu FFnApAFpA=pqA∃!xranFqx

Proof

Step Hyp Ref Expression
1 fnfvelrn FFnAoAForanF
2 1 ex FFnAoAForanF
3 2 adantr FFnApAFpA=poAForanF
4 fnrnfv FFnAranF=y|pAy=Fp
5 4 eqabrd FFnAyranFpAy=Fp
6 5 adantr FFnApAFpA=pyranFpAy=Fp
7 nfv pFFnA
8 nfra1 ppAFpA=p
9 7 8 nfan pFFnApAFpA=p
10 nfv poAoyy=Fo
11 eleq2 y=FpoyoFp
12 elin oFpAoFpoA
13 12 rbaib oAoFpAoFp
14 13 ad2antll FFnApAFpA=ppAoAoFpAoFp
15 rsp pAFpA=ppAFpA=p
16 eleq2 FpA=poFpAop
17 velsn opo=p
18 equcom o=pp=o
19 17 18 bitri opp=o
20 16 19 bitrdi FpA=poFpAp=o
21 15 20 syl6 pAFpA=ppAoFpAp=o
22 21 adantl FFnApAFpA=ppAoFpAp=o
23 22 adantrd FFnApAFpA=ppAoAoFpAp=o
24 23 imp FFnApAFpA=ppAoAoFpAp=o
25 14 24 bitr3d FFnApAFpA=ppAoAoFpp=o
26 11 25 sylan9bbr FFnApAFpA=ppAoAy=Fpoyp=o
27 26 ex FFnApAFpA=ppAoAy=Fpoyp=o
28 27 anass1rs FFnApAFpA=poApAy=Fpoyp=o
29 28 impr FFnApAFpA=poApAy=Fpoyp=o
30 29 an32s FFnApAFpA=ppAy=FpoAoyp=o
31 eqeq1 y=Fpy=FoFp=Fo
32 dffn3 FFnAF:AranF
33 fvineqsnf1 F:AranFpAFpA=pF:A1-1ranF
34 32 33 sylanb FFnApAFpA=pF:A1-1ranF
35 dff13 F:A1-1ranFF:AranFpAoAFp=Fop=o
36 34 35 sylib FFnApAFpA=pF:AranFpAoAFp=Fop=o
37 36 simprd FFnApAFpA=ppAoAFp=Fop=o
38 rsp pAoAFp=Fop=opAoAFp=Fop=o
39 37 38 syl FFnApAFpA=ppAoAFp=Fop=o
40 rsp oAFp=Fop=ooAFp=Fop=o
41 39 40 syl6 FFnApAFpA=ppAoAFp=Fop=o
42 41 imp32 FFnApAFpA=ppAoAFp=Fop=o
43 fveq2 p=oFp=Fo
44 42 43 impbid1 FFnApAFpA=ppAoAFp=Fop=o
45 31 44 sylan9bbr FFnApAFpA=ppAoAy=Fpy=Fop=o
46 45 ex FFnApAFpA=ppAoAy=Fpy=Fop=o
47 46 anass1rs FFnApAFpA=poApAy=Fpy=Fop=o
48 47 impr FFnApAFpA=poApAy=Fpy=Fop=o
49 48 an32s FFnApAFpA=ppAy=FpoAy=Fop=o
50 30 49 bitr4d FFnApAFpA=ppAy=FpoAoyy=Fo
51 50 ex FFnApAFpA=ppAy=FpoAoyy=Fo
52 51 ralrimiv FFnApAFpA=ppAy=FpoAoyy=Fo
53 52 exp32 FFnApAFpA=ppAy=FpoAoyy=Fo
54 9 10 53 rexlimd FFnApAFpA=ppAy=FpoAoyy=Fo
55 6 54 sylbid FFnApAFpA=pyranFoAoyy=Fo
56 rsp oAoyy=FooAoyy=Fo
57 55 56 syl6 FFnApAFpA=pyranFoAoyy=Fo
58 57 com23 FFnApAFpA=poAyranFoyy=Fo
59 58 ralrimdv FFnApAFpA=poAyranFoyy=Fo
60 reu6i ForanFyranFoyy=Fo∃!yranFoy
61 60 ex ForanFyranFoyy=Fo∃!yranFoy
62 3 59 61 syl6c FFnApAFpA=poA∃!yranFoy
63 62 ralrimiv FFnApAFpA=poA∃!yranFoy
64 nfv xq=o
65 nfv yq=o
66 nfvd q=oyqx
67 nfvd q=oxoy
68 eleq12 q=ox=yqxoy
69 68 ex q=ox=yqxoy
70 64 65 66 67 69 cbvreud q=o∃!xranFqx∃!yranFoy
71 70 cbvralvw qA∃!xranFqxoA∃!yranFoy
72 63 71 sylibr FFnApAFpA=pqA∃!xranFqx