Description: A theorem about functions where the image of every point intersects the domain only at that point. (Contributed by ML, 27-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | fvineqsneu | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfvelrn | |
|
2 | 1 | ex | |
3 | 2 | adantr | |
4 | fnrnfv | |
|
5 | 4 | eqabrd | |
6 | 5 | adantr | |
7 | nfv | |
|
8 | nfra1 | |
|
9 | 7 8 | nfan | |
10 | nfv | |
|
11 | eleq2 | |
|
12 | elin | |
|
13 | 12 | rbaib | |
14 | 13 | ad2antll | |
15 | rsp | |
|
16 | eleq2 | |
|
17 | velsn | |
|
18 | equcom | |
|
19 | 17 18 | bitri | |
20 | 16 19 | bitrdi | |
21 | 15 20 | syl6 | |
22 | 21 | adantl | |
23 | 22 | adantrd | |
24 | 23 | imp | |
25 | 14 24 | bitr3d | |
26 | 11 25 | sylan9bbr | |
27 | 26 | ex | |
28 | 27 | anass1rs | |
29 | 28 | impr | |
30 | 29 | an32s | |
31 | eqeq1 | |
|
32 | dffn3 | |
|
33 | fvineqsnf1 | |
|
34 | 32 33 | sylanb | |
35 | dff13 | |
|
36 | 34 35 | sylib | |
37 | 36 | simprd | |
38 | rsp | |
|
39 | 37 38 | syl | |
40 | rsp | |
|
41 | 39 40 | syl6 | |
42 | 41 | imp32 | |
43 | fveq2 | |
|
44 | 42 43 | impbid1 | |
45 | 31 44 | sylan9bbr | |
46 | 45 | ex | |
47 | 46 | anass1rs | |
48 | 47 | impr | |
49 | 48 | an32s | |
50 | 30 49 | bitr4d | |
51 | 50 | ex | |
52 | 51 | ralrimiv | |
53 | 52 | exp32 | |
54 | 9 10 53 | rexlimd | |
55 | 6 54 | sylbid | |
56 | rsp | |
|
57 | 55 56 | syl6 | |
58 | 57 | com23 | |
59 | 58 | ralrimdv | |
60 | reu6i | |
|
61 | 60 | ex | |
62 | 3 59 61 | syl6c | |
63 | 62 | ralrimiv | |
64 | nfv | |
|
65 | nfv | |
|
66 | nfvd | |
|
67 | nfvd | |
|
68 | eleq12 | |
|
69 | 68 | ex | |
70 | 64 65 66 67 69 | cbvreud | |
71 | 70 | cbvralvw | |
72 | 63 71 | sylibr | |