Metamath Proof Explorer


Theorem gg-divcn

Description: Complex number division is a continuous function, when the second argument is nonzero. (Contributed by Mario Carneiro, 12-Aug-2014) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)

Ref Expression
Hypotheses mpomulcn.j J=TopOpenfld
gg-divcn.k K=J𝑡0
Assertion gg-divcn ÷J×tKCnJ

Proof

Step Hyp Ref Expression
1 mpomulcn.j J=TopOpenfld
2 gg-divcn.k K=J𝑡0
3 df-div ÷=x,y0ιz|yz=x
4 eldifsn y0yy0
5 divval xyy0xy=ιz|yz=x
6 divrec xyy0xy=x1y
7 5 6 eqtr3d xyy0ιz|yz=x=x1y
8 7 3expb xyy0ιz|yz=x=x1y
9 4 8 sylan2b xy0ιz|yz=x=x1y
10 9 mpoeq3ia x,y0ιz|yz=x=x,y0x1y
11 3 10 eqtri ÷=x,y0x1y
12 1 cnfldtopon JTopOn
13 12 a1i JTopOn
14 difss 0
15 resttopon JTopOn0J𝑡0TopOn0
16 13 14 15 sylancl J𝑡0TopOn0
17 2 16 eqeltrid KTopOn0
18 13 17 cnmpt1st x,y0xJ×tKCnJ
19 13 17 cnmpt2nd x,y0yJ×tKCnK
20 eqid z01z=z01z
21 eldifsn z0zz0
22 reccl zz01z
23 21 22 sylbi z01z
24 20 23 fmpti z01z:0
25 eqid if1xw1xwx2=if1xw1xwx2
26 25 reccn2 x0w+a+y0yx<a1y1x<w
27 ovres x0y0xabs0×0y=xabsy
28 eldifi x0x
29 eldifi y0y
30 eqid abs=abs
31 30 cnmetdval xyxabsy=xy
32 abssub xyxy=yx
33 31 32 eqtrd xyxabsy=yx
34 28 29 33 syl2an x0y0xabsy=yx
35 27 34 eqtrd x0y0xabs0×0y=yx
36 35 breq1d x0y0xabs0×0y<ayx<a
37 oveq2 z=x1z=1x
38 ovex 1xV
39 37 20 38 fvmpt x0z01zx=1x
40 oveq2 z=y1z=1y
41 ovex 1yV
42 40 20 41 fvmpt y0z01zy=1y
43 39 42 oveqan12d x0y0z01zxabsz01zy=1xabs1y
44 eldifsn x0xx0
45 reccl xx01x
46 44 45 sylbi x01x
47 reccl yy01y
48 4 47 sylbi y01y
49 30 cnmetdval 1x1y1xabs1y=1x1y
50 abssub 1x1y1x1y=1y1x
51 49 50 eqtrd 1x1y1xabs1y=1y1x
52 46 48 51 syl2an x0y01xabs1y=1y1x
53 43 52 eqtrd x0y0z01zxabsz01zy=1y1x
54 53 breq1d x0y0z01zxabsz01zy<w1y1x<w
55 36 54 imbi12d x0y0xabs0×0y<az01zxabsz01zy<wyx<a1y1x<w
56 55 ralbidva x0y0xabs0×0y<az01zxabsz01zy<wy0yx<a1y1x<w
57 56 rexbidv x0a+y0xabs0×0y<az01zxabsz01zy<wa+y0yx<a1y1x<w
58 57 adantr x0w+a+y0xabs0×0y<az01zxabsz01zy<wa+y0yx<a1y1x<w
59 26 58 mpbird x0w+a+y0xabs0×0y<az01zxabsz01zy<w
60 59 rgen2 x0w+a+y0xabs0×0y<az01zxabsz01zy<w
61 cnxmet abs∞Met
62 xmetres2 abs∞Met0abs0×0∞Met0
63 61 14 62 mp2an abs0×0∞Met0
64 eqid abs0×0=abs0×0
65 1 cnfldtopn J=MetOpenabs
66 eqid MetOpenabs0×0=MetOpenabs0×0
67 64 65 66 metrest abs∞Met0J𝑡0=MetOpenabs0×0
68 61 14 67 mp2an J𝑡0=MetOpenabs0×0
69 2 68 eqtri K=MetOpenabs0×0
70 69 65 metcn abs0×0∞Met0abs∞Metz01zKCnJz01z:0x0w+a+y0xabs0×0y<az01zxabsz01zy<w
71 63 61 70 mp2an z01zKCnJz01z:0x0w+a+y0xabs0×0y<az01zxabsz01zy<w
72 24 60 71 mpbir2an z01zKCnJ
73 72 a1i z01zKCnJ
74 13 17 19 17 73 40 cnmpt21 x,y01yJ×tKCnJ
75 1 mpomulcn u,vuvJ×tJCnJ
76 75 a1i u,vuvJ×tJCnJ
77 oveq12 u=xv=1yuv=x1y
78 13 17 18 74 13 13 76 77 cnmpt22 x,y0x1yJ×tKCnJ
79 78 mptru x,y0x1yJ×tKCnJ
80 11 79 eqeltri ÷J×tKCnJ