Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Rohan Ridenour
Shorter primitive equivalent of ax-groth
Minimal universes
grumnudlem
Next ⟩
grumnud
Metamath Proof Explorer
Ascii
Unicode
Theorem
grumnudlem
Description:
Lemma for
grumnud
.
(Contributed by
Rohan Ridenour
, 13-Aug-2023)
Ref
Expression
Hypotheses
grumnudlem.1
⊢
M
=
k
|
∀
l
∈
k
𝒫
l
⊆
k
∧
∀
m
∃
n
∈
k
𝒫
l
⊆
n
∧
∀
p
∈
l
∃
q
∈
k
p
∈
q
∧
q
∈
m
→
∃
r
∈
m
p
∈
r
∧
⋃
r
⊆
n
grumnudlem.2
⊢
φ
→
G
∈
Univ
grumnudlem.3
⊢
F
=
b
c
|
∃
d
⋃
d
=
c
∧
d
∈
f
∧
b
∈
d
∩
G
×
G
grumnudlem.4
⊢
i
∈
G
∧
h
∈
G
→
i
F
h
↔
∃
j
⋃
j
=
h
∧
j
∈
f
∧
i
∈
j
grumnudlem.5
⊢
h
∈
F
Coll
z
∧
⋃
j
=
h
∧
j
∈
f
∧
i
∈
j
→
∃
u
∈
f
i
∈
u
∧
⋃
u
∈
F
Coll
z
Assertion
grumnudlem
⊢
φ
→
G
∈
M
Proof
Step
Hyp
Ref
Expression
1
grumnudlem.1
⊢
M
=
k
|
∀
l
∈
k
𝒫
l
⊆
k
∧
∀
m
∃
n
∈
k
𝒫
l
⊆
n
∧
∀
p
∈
l
∃
q
∈
k
p
∈
q
∧
q
∈
m
→
∃
r
∈
m
p
∈
r
∧
⋃
r
⊆
n
2
grumnudlem.2
⊢
φ
→
G
∈
Univ
3
grumnudlem.3
⊢
F
=
b
c
|
∃
d
⋃
d
=
c
∧
d
∈
f
∧
b
∈
d
∩
G
×
G
4
grumnudlem.4
⊢
i
∈
G
∧
h
∈
G
→
i
F
h
↔
∃
j
⋃
j
=
h
∧
j
∈
f
∧
i
∈
j
5
grumnudlem.5
⊢
h
∈
F
Coll
z
∧
⋃
j
=
h
∧
j
∈
f
∧
i
∈
j
→
∃
u
∈
f
i
∈
u
∧
⋃
u
∈
F
Coll
z
6
gruss
⊢
G
∈
Univ
∧
z
∈
G
∧
a
⊆
z
→
a
∈
G
7
2
6
syl3an1
⊢
φ
∧
z
∈
G
∧
a
⊆
z
→
a
∈
G
8
7
3expia
⊢
φ
∧
z
∈
G
→
a
⊆
z
→
a
∈
G
9
8
alrimiv
⊢
φ
∧
z
∈
G
→
∀
a
a
⊆
z
→
a
∈
G
10
pwss
⊢
𝒫
z
⊆
G
↔
∀
a
a
⊆
z
→
a
∈
G
11
9
10
sylibr
⊢
φ
∧
z
∈
G
→
𝒫
z
⊆
G
12
ssun1
⊢
𝒫
z
⊆
𝒫
z
∪
⋃
F
Coll
z
13
simp3
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
→
w
=
𝒫
z
∪
⋃
F
Coll
z
14
12
13
sseqtrrid
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
→
𝒫
z
⊆
w
15
simp1l3
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
→
w
=
𝒫
z
∪
⋃
F
Coll
z
16
simp1r
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
→
i
∈
z
17
simpr
⊢
h
=
⋃
v
∧
j
=
v
→
j
=
v
18
17
unieqd
⊢
h
=
⋃
v
∧
j
=
v
→
⋃
j
=
⋃
v
19
simpl
⊢
h
=
⋃
v
∧
j
=
v
→
h
=
⋃
v
20
18
19
eqtr4d
⊢
h
=
⋃
v
∧
j
=
v
→
⋃
j
=
h
21
20
adantll
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
∧
h
=
⋃
v
∧
j
=
v
→
⋃
j
=
h
22
simpr
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
∧
h
=
⋃
v
∧
j
=
v
→
j
=
v
23
simpll3
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
∧
h
=
⋃
v
∧
j
=
v
→
i
∈
v
∧
v
∈
f
24
23
simprd
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
∧
h
=
⋃
v
∧
j
=
v
→
v
∈
f
25
22
24
eqeltrd
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
∧
h
=
⋃
v
∧
j
=
v
→
j
∈
f
26
23
simpld
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
∧
h
=
⋃
v
∧
j
=
v
→
i
∈
v
27
26
22
eleqtrrd
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
∧
h
=
⋃
v
∧
j
=
v
→
i
∈
j
28
21
25
27
3jca
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
∧
h
=
⋃
v
∧
j
=
v
→
⋃
j
=
h
∧
j
∈
f
∧
i
∈
j
29
simpl2
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
∧
h
=
⋃
v
→
v
∈
G
30
28
29
rr-spce
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
∧
h
=
⋃
v
→
∃
j
⋃
j
=
h
∧
j
∈
f
∧
i
∈
j
31
simp1l1
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
→
φ
32
31
2
syl
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
→
G
∈
Univ
33
simp2
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
→
v
∈
G
34
gruuni
⊢
G
∈
Univ
∧
v
∈
G
→
⋃
v
∈
G
35
32
33
34
syl2anc
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
→
⋃
v
∈
G
36
30
35
rspcime
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
→
∃
h
∈
G
∃
j
⋃
j
=
h
∧
j
∈
f
∧
i
∈
j
37
simpl1
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
→
φ
38
37
2
syl
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
→
G
∈
Univ
39
simpl2
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
→
z
∈
G
40
simpr
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
→
i
∈
z
41
gruel
⊢
G
∈
Univ
∧
z
∈
G
∧
i
∈
z
→
i
∈
G
42
38
39
40
41
syl3anc
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
→
i
∈
G
43
42
3ad2ant1
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
→
i
∈
G
44
43
4
sylan
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
∧
h
∈
G
→
i
F
h
↔
∃
j
⋃
j
=
h
∧
j
∈
f
∧
i
∈
j
45
44
rexbidva
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
→
∃
h
∈
G
i
F
h
↔
∃
h
∈
G
∃
j
⋃
j
=
h
∧
j
∈
f
∧
i
∈
j
46
36
45
mpbird
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
→
∃
h
∈
G
i
F
h
47
rexex
⊢
∃
h
∈
G
i
F
h
→
∃
h
i
F
h
48
46
47
syl
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
→
∃
h
i
F
h
49
16
48
cpcoll2d
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
→
∃
h
∈
F
Coll
z
i
F
h
50
32
adantr
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
∧
h
∈
F
Coll
z
→
G
∈
Univ
51
39
3ad2ant1
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
→
z
∈
G
52
51
adantr
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
∧
h
∈
F
Coll
z
→
z
∈
G
53
2
adantr
⊢
φ
∧
z
∈
G
→
G
∈
Univ
54
inss2
⊢
b
c
|
∃
d
⋃
d
=
c
∧
d
∈
f
∧
b
∈
d
∩
G
×
G
⊆
G
×
G
55
3
54
eqsstri
⊢
F
⊆
G
×
G
56
55
a1i
⊢
φ
∧
z
∈
G
→
F
⊆
G
×
G
57
simpr
⊢
φ
∧
z
∈
G
→
z
∈
G
58
53
56
57
grucollcld
⊢
φ
∧
z
∈
G
→
F
Coll
z
∈
G
59
31
52
58
syl2an2r
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
∧
h
∈
F
Coll
z
→
F
Coll
z
∈
G
60
simpr
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
∧
h
∈
F
Coll
z
→
h
∈
F
Coll
z
61
gruel
⊢
G
∈
Univ
∧
F
Coll
z
∈
G
∧
h
∈
F
Coll
z
→
h
∈
G
62
50
59
60
61
syl3anc
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
∧
h
∈
F
Coll
z
→
h
∈
G
63
43
62
4
syl2an2r
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
∧
h
∈
F
Coll
z
→
i
F
h
↔
∃
j
⋃
j
=
h
∧
j
∈
f
∧
i
∈
j
64
63
rexbidva
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
→
∃
h
∈
F
Coll
z
i
F
h
↔
∃
h
∈
F
Coll
z
∃
j
⋃
j
=
h
∧
j
∈
f
∧
i
∈
j
65
49
64
mpbid
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
→
∃
h
∈
F
Coll
z
∃
j
⋃
j
=
h
∧
j
∈
f
∧
i
∈
j
66
rexcom4
⊢
∃
h
∈
F
Coll
z
∃
j
⋃
j
=
h
∧
j
∈
f
∧
i
∈
j
↔
∃
j
∃
h
∈
F
Coll
z
⋃
j
=
h
∧
j
∈
f
∧
i
∈
j
67
5
rexlimiva
⊢
∃
h
∈
F
Coll
z
⋃
j
=
h
∧
j
∈
f
∧
i
∈
j
→
∃
u
∈
f
i
∈
u
∧
⋃
u
∈
F
Coll
z
68
67
exlimiv
⊢
∃
j
∃
h
∈
F
Coll
z
⋃
j
=
h
∧
j
∈
f
∧
i
∈
j
→
∃
u
∈
f
i
∈
u
∧
⋃
u
∈
F
Coll
z
69
66
68
sylbi
⊢
∃
h
∈
F
Coll
z
∃
j
⋃
j
=
h
∧
j
∈
f
∧
i
∈
j
→
∃
u
∈
f
i
∈
u
∧
⋃
u
∈
F
Coll
z
70
65
69
syl
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
→
∃
u
∈
f
i
∈
u
∧
⋃
u
∈
F
Coll
z
71
elssuni
⊢
⋃
u
∈
F
Coll
z
→
⋃
u
⊆
⋃
F
Coll
z
72
ssun2
⊢
⋃
F
Coll
z
⊆
𝒫
z
∪
⋃
F
Coll
z
73
71
72
sstrdi
⊢
⋃
u
∈
F
Coll
z
→
⋃
u
⊆
𝒫
z
∪
⋃
F
Coll
z
74
73
adantl
⊢
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
⋃
u
∈
F
Coll
z
→
⋃
u
⊆
𝒫
z
∪
⋃
F
Coll
z
75
simpl
⊢
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
⋃
u
∈
F
Coll
z
→
w
=
𝒫
z
∪
⋃
F
Coll
z
76
74
75
sseqtrrd
⊢
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
⋃
u
∈
F
Coll
z
→
⋃
u
⊆
w
77
76
ex
⊢
w
=
𝒫
z
∪
⋃
F
Coll
z
→
⋃
u
∈
F
Coll
z
→
⋃
u
⊆
w
78
77
anim2d
⊢
w
=
𝒫
z
∪
⋃
F
Coll
z
→
i
∈
u
∧
⋃
u
∈
F
Coll
z
→
i
∈
u
∧
⋃
u
⊆
w
79
78
reximdv
⊢
w
=
𝒫
z
∪
⋃
F
Coll
z
→
∃
u
∈
f
i
∈
u
∧
⋃
u
∈
F
Coll
z
→
∃
u
∈
f
i
∈
u
∧
⋃
u
⊆
w
80
15
70
79
sylc
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
∧
v
∈
G
∧
i
∈
v
∧
v
∈
f
→
∃
u
∈
f
i
∈
u
∧
⋃
u
⊆
w
81
80
rexlimdv3a
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
∧
i
∈
z
→
∃
v
∈
G
i
∈
v
∧
v
∈
f
→
∃
u
∈
f
i
∈
u
∧
⋃
u
⊆
w
82
81
ralrimiva
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
→
∀
i
∈
z
∃
v
∈
G
i
∈
v
∧
v
∈
f
→
∃
u
∈
f
i
∈
u
∧
⋃
u
⊆
w
83
14
82
jca
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
→
𝒫
z
⊆
w
∧
∀
i
∈
z
∃
v
∈
G
i
∈
v
∧
v
∈
f
→
∃
u
∈
f
i
∈
u
∧
⋃
u
⊆
w
84
83
3expa
⊢
φ
∧
z
∈
G
∧
w
=
𝒫
z
∪
⋃
F
Coll
z
→
𝒫
z
⊆
w
∧
∀
i
∈
z
∃
v
∈
G
i
∈
v
∧
v
∈
f
→
∃
u
∈
f
i
∈
u
∧
⋃
u
⊆
w
85
grupw
⊢
G
∈
Univ
∧
z
∈
G
→
𝒫
z
∈
G
86
2
85
sylan
⊢
φ
∧
z
∈
G
→
𝒫
z
∈
G
87
gruuni
⊢
G
∈
Univ
∧
F
Coll
z
∈
G
→
⋃
F
Coll
z
∈
G
88
2
58
87
syl2an2r
⊢
φ
∧
z
∈
G
→
⋃
F
Coll
z
∈
G
89
gruun
⊢
G
∈
Univ
∧
𝒫
z
∈
G
∧
⋃
F
Coll
z
∈
G
→
𝒫
z
∪
⋃
F
Coll
z
∈
G
90
53
86
88
89
syl3anc
⊢
φ
∧
z
∈
G
→
𝒫
z
∪
⋃
F
Coll
z
∈
G
91
84
90
rspcime
⊢
φ
∧
z
∈
G
→
∃
w
∈
G
𝒫
z
⊆
w
∧
∀
i
∈
z
∃
v
∈
G
i
∈
v
∧
v
∈
f
→
∃
u
∈
f
i
∈
u
∧
⋃
u
⊆
w
92
91
alrimiv
⊢
φ
∧
z
∈
G
→
∀
f
∃
w
∈
G
𝒫
z
⊆
w
∧
∀
i
∈
z
∃
v
∈
G
i
∈
v
∧
v
∈
f
→
∃
u
∈
f
i
∈
u
∧
⋃
u
⊆
w
93
11
92
jca
⊢
φ
∧
z
∈
G
→
𝒫
z
⊆
G
∧
∀
f
∃
w
∈
G
𝒫
z
⊆
w
∧
∀
i
∈
z
∃
v
∈
G
i
∈
v
∧
v
∈
f
→
∃
u
∈
f
i
∈
u
∧
⋃
u
⊆
w
94
93
ralrimiva
⊢
φ
→
∀
z
∈
G
𝒫
z
⊆
G
∧
∀
f
∃
w
∈
G
𝒫
z
⊆
w
∧
∀
i
∈
z
∃
v
∈
G
i
∈
v
∧
v
∈
f
→
∃
u
∈
f
i
∈
u
∧
⋃
u
⊆
w
95
1
ismnu
⊢
G
∈
Univ
→
G
∈
M
↔
∀
z
∈
G
𝒫
z
⊆
G
∧
∀
f
∃
w
∈
G
𝒫
z
⊆
w
∧
∀
i
∈
z
∃
v
∈
G
i
∈
v
∧
v
∈
f
→
∃
u
∈
f
i
∈
u
∧
⋃
u
⊆
w
96
2
95
syl
⊢
φ
→
G
∈
M
↔
∀
z
∈
G
𝒫
z
⊆
G
∧
∀
f
∃
w
∈
G
𝒫
z
⊆
w
∧
∀
i
∈
z
∃
v
∈
G
i
∈
v
∧
v
∈
f
→
∃
u
∈
f
i
∈
u
∧
⋃
u
⊆
w
97
94
96
mpbird
⊢
φ
→
G
∈
M