Metamath Proof Explorer


Theorem grumnudlem

Description: Lemma for grumnud . (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses grumnudlem.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
grumnudlem.2 φGUniv
grumnudlem.3 F=bc|dd=cdfbdG×G
grumnudlem.4 iGhGiFhjj=hjfij
grumnudlem.5 hFCollzj=hjfijufiuuFCollz
Assertion grumnudlem φGM

Proof

Step Hyp Ref Expression
1 grumnudlem.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
2 grumnudlem.2 φGUniv
3 grumnudlem.3 F=bc|dd=cdfbdG×G
4 grumnudlem.4 iGhGiFhjj=hjfij
5 grumnudlem.5 hFCollzj=hjfijufiuuFCollz
6 gruss GUnivzGazaG
7 2 6 syl3an1 φzGazaG
8 7 3expia φzGazaG
9 8 alrimiv φzGaazaG
10 pwss 𝒫zGaazaG
11 9 10 sylibr φzG𝒫zG
12 ssun1 𝒫z𝒫zFCollz
13 simp3 φzGw=𝒫zFCollzw=𝒫zFCollz
14 12 13 sseqtrrid φzGw=𝒫zFCollz𝒫zw
15 simp1l3 φzGw=𝒫zFCollzizvGivvfw=𝒫zFCollz
16 simp1r φzGw=𝒫zFCollzizvGivvfiz
17 simpr h=vj=vj=v
18 17 unieqd h=vj=vj=v
19 simpl h=vj=vh=v
20 18 19 eqtr4d h=vj=vj=h
21 20 adantll φzGw=𝒫zFCollzizvGivvfh=vj=vj=h
22 simpr φzGw=𝒫zFCollzizvGivvfh=vj=vj=v
23 simpll3 φzGw=𝒫zFCollzizvGivvfh=vj=vivvf
24 23 simprd φzGw=𝒫zFCollzizvGivvfh=vj=vvf
25 22 24 eqeltrd φzGw=𝒫zFCollzizvGivvfh=vj=vjf
26 23 simpld φzGw=𝒫zFCollzizvGivvfh=vj=viv
27 26 22 eleqtrrd φzGw=𝒫zFCollzizvGivvfh=vj=vij
28 21 25 27 3jca φzGw=𝒫zFCollzizvGivvfh=vj=vj=hjfij
29 simpl2 φzGw=𝒫zFCollzizvGivvfh=vvG
30 28 29 rr-spce φzGw=𝒫zFCollzizvGivvfh=vjj=hjfij
31 simp1l1 φzGw=𝒫zFCollzizvGivvfφ
32 31 2 syl φzGw=𝒫zFCollzizvGivvfGUniv
33 simp2 φzGw=𝒫zFCollzizvGivvfvG
34 gruuni GUnivvGvG
35 32 33 34 syl2anc φzGw=𝒫zFCollzizvGivvfvG
36 30 35 rspcime φzGw=𝒫zFCollzizvGivvfhGjj=hjfij
37 simpl1 φzGw=𝒫zFCollzizφ
38 37 2 syl φzGw=𝒫zFCollzizGUniv
39 simpl2 φzGw=𝒫zFCollzizzG
40 simpr φzGw=𝒫zFCollziziz
41 gruel GUnivzGiziG
42 38 39 40 41 syl3anc φzGw=𝒫zFCollziziG
43 42 3ad2ant1 φzGw=𝒫zFCollzizvGivvfiG
44 43 4 sylan φzGw=𝒫zFCollzizvGivvfhGiFhjj=hjfij
45 44 rexbidva φzGw=𝒫zFCollzizvGivvfhGiFhhGjj=hjfij
46 36 45 mpbird φzGw=𝒫zFCollzizvGivvfhGiFh
47 rexex hGiFhhiFh
48 46 47 syl φzGw=𝒫zFCollzizvGivvfhiFh
49 16 48 cpcoll2d φzGw=𝒫zFCollzizvGivvfhFCollziFh
50 32 adantr φzGw=𝒫zFCollzizvGivvfhFCollzGUniv
51 39 3ad2ant1 φzGw=𝒫zFCollzizvGivvfzG
52 51 adantr φzGw=𝒫zFCollzizvGivvfhFCollzzG
53 2 adantr φzGGUniv
54 inss2 bc|dd=cdfbdG×GG×G
55 3 54 eqsstri FG×G
56 55 a1i φzGFG×G
57 simpr φzGzG
58 53 56 57 grucollcld φzGFCollzG
59 31 52 58 syl2an2r φzGw=𝒫zFCollzizvGivvfhFCollzFCollzG
60 simpr φzGw=𝒫zFCollzizvGivvfhFCollzhFCollz
61 gruel GUnivFCollzGhFCollzhG
62 50 59 60 61 syl3anc φzGw=𝒫zFCollzizvGivvfhFCollzhG
63 43 62 4 syl2an2r φzGw=𝒫zFCollzizvGivvfhFCollziFhjj=hjfij
64 63 rexbidva φzGw=𝒫zFCollzizvGivvfhFCollziFhhFCollzjj=hjfij
65 49 64 mpbid φzGw=𝒫zFCollzizvGivvfhFCollzjj=hjfij
66 rexcom4 hFCollzjj=hjfijjhFCollzj=hjfij
67 5 rexlimiva hFCollzj=hjfijufiuuFCollz
68 67 exlimiv jhFCollzj=hjfijufiuuFCollz
69 66 68 sylbi hFCollzjj=hjfijufiuuFCollz
70 65 69 syl φzGw=𝒫zFCollzizvGivvfufiuuFCollz
71 elssuni uFCollzuFCollz
72 ssun2 FCollz𝒫zFCollz
73 71 72 sstrdi uFCollzu𝒫zFCollz
74 73 adantl w=𝒫zFCollzuFCollzu𝒫zFCollz
75 simpl w=𝒫zFCollzuFCollzw=𝒫zFCollz
76 74 75 sseqtrrd w=𝒫zFCollzuFCollzuw
77 76 ex w=𝒫zFCollzuFCollzuw
78 77 anim2d w=𝒫zFCollziuuFCollziuuw
79 78 reximdv w=𝒫zFCollzufiuuFCollzufiuuw
80 15 70 79 sylc φzGw=𝒫zFCollzizvGivvfufiuuw
81 80 rexlimdv3a φzGw=𝒫zFCollzizvGivvfufiuuw
82 81 ralrimiva φzGw=𝒫zFCollzizvGivvfufiuuw
83 14 82 jca φzGw=𝒫zFCollz𝒫zwizvGivvfufiuuw
84 83 3expa φzGw=𝒫zFCollz𝒫zwizvGivvfufiuuw
85 grupw GUnivzG𝒫zG
86 2 85 sylan φzG𝒫zG
87 gruuni GUnivFCollzGFCollzG
88 2 58 87 syl2an2r φzGFCollzG
89 gruun GUniv𝒫zGFCollzG𝒫zFCollzG
90 53 86 88 89 syl3anc φzG𝒫zFCollzG
91 84 90 rspcime φzGwG𝒫zwizvGivvfufiuuw
92 91 alrimiv φzGfwG𝒫zwizvGivvfufiuuw
93 11 92 jca φzG𝒫zGfwG𝒫zwizvGivvfufiuuw
94 93 ralrimiva φzG𝒫zGfwG𝒫zwizvGivvfufiuuw
95 1 ismnu GUnivGMzG𝒫zGfwG𝒫zwizvGivvfufiuuw
96 2 95 syl φGMzG𝒫zGfwG𝒫zwizvGivvfufiuuw
97 94 96 mpbird φGM