Step |
Hyp |
Ref |
Expression |
1 |
|
gsumfs2d.p |
|
2 |
|
gsumfs2d.b |
|
3 |
|
gsumfs2d.1 |
|
4 |
|
gsumfs2d.r |
|
5 |
|
gsumfs2d.2 |
|
6 |
|
gsumfs2d.w |
|
7 |
|
gsumfs2d.3 |
|
8 |
|
gsumfs2d.a |
|
9 |
6
|
adantr |
|
10 |
8
|
adantr |
|
11 |
10
|
imaexd |
|
12 |
7
|
ffnd |
|
13 |
12
|
ad2antrr |
|
14 |
8
|
ad2antrr |
|
15 |
3
|
fvexi |
|
16 |
15
|
a1i |
|
17 |
|
simpr |
|
18 |
17
|
eldifad |
|
19 |
|
vex |
|
20 |
|
vex |
|
21 |
19 20
|
elimasn |
|
22 |
21
|
biimpi |
|
23 |
18 22
|
syl |
|
24 |
17
|
eldifbd |
|
25 |
19 20
|
elimasn |
|
26 |
25
|
biimpri |
|
27 |
24 26
|
nsyl |
|
28 |
23 27
|
eldifd |
|
29 |
13 14 16 28
|
fvdifsupp |
|
30 |
5
|
fsuppimpd |
|
31 |
30
|
adantr |
|
32 |
|
imafi2 |
|
33 |
31 32
|
syl |
|
34 |
7
|
ad2antrr |
|
35 |
22
|
adantl |
|
36 |
34 35
|
ffvelcdmd |
|
37 |
|
suppssdm |
|
38 |
37 7
|
fssdm |
|
39 |
38
|
adantr |
|
40 |
|
imass1 |
|
41 |
39 40
|
syl |
|
42 |
2 3 9 11 29 33 36 41
|
gsummptres2 |
|
43 |
42
|
mpteq2dva |
|
44 |
43
|
oveq2d |
|
45 |
8
|
dmexd |
|
46 |
12
|
ad2antrr |
|
47 |
8
|
ad2antrr |
|
48 |
15
|
a1i |
|
49 |
22
|
adantl |
|
50 |
|
simplr |
|
51 |
50
|
eldifbd |
|
52 |
19 20
|
opeldm |
|
53 |
51 52
|
nsyl |
|
54 |
49 53
|
eldifd |
|
55 |
46 47 48 54
|
fvdifsupp |
|
56 |
55
|
mpteq2dva |
|
57 |
56
|
oveq2d |
|
58 |
6
|
cmnmndd |
|
59 |
8
|
adantr |
|
60 |
59
|
imaexd |
|
61 |
3
|
gsumz |
|
62 |
58 60 61
|
syl2an2r |
|
63 |
57 62
|
eqtrd |
|
64 |
|
dmfi |
|
65 |
30 64
|
syl |
|
66 |
6
|
adantr |
|
67 |
8
|
adantr |
|
68 |
67
|
imaexd |
|
69 |
7
|
ad2antrr |
|
70 |
22
|
adantl |
|
71 |
69 70
|
ffvelcdmd |
|
72 |
71
|
fmpttd |
|
73 |
68
|
mptexd |
|
74 |
72
|
ffnd |
|
75 |
15
|
a1i |
|
76 |
30
|
adantr |
|
77 |
76 32
|
syl |
|
78 |
|
eqid |
|
79 |
|
simp-4l |
|
80 |
|
simp-4r |
|
81 |
|
simpr |
|
82 |
|
simpllr |
|
83 |
81 82
|
eqeltrd |
|
84 |
|
simplr |
|
85 |
81 84
|
eqneltrd |
|
86 |
12
|
ad3antrrr |
|
87 |
8
|
ad3antrrr |
|
88 |
15
|
a1i |
|
89 |
70
|
adantr |
|
90 |
26
|
con3i |
|
91 |
90
|
adantl |
|
92 |
89 91
|
eldifd |
|
93 |
86 87 88 92
|
fvdifsupp |
|
94 |
79 80 83 85 93
|
syl1111anc |
|
95 |
|
simplr |
|
96 |
15
|
a1i |
|
97 |
78 94 95 96
|
fvmptd2 |
|
98 |
97
|
ex |
|
99 |
98
|
orrd |
|
100 |
73 74 75 77 99
|
finnzfsuppd |
|
101 |
2 3 66 68 72 100
|
gsumcl |
|
102 |
|
dmss |
|
103 |
38 102
|
syl |
|
104 |
2 3 6 45 63 65 101 103
|
gsummptres2 |
|
105 |
7 38
|
feqresmpt |
|
106 |
105
|
oveq2d |
|
107 |
|
ssidd |
|
108 |
2 3 6 8 7 107 5
|
gsumres |
|
109 |
|
nfcv |
|
110 |
|
fveq2 |
|
111 |
|
relss |
|
112 |
38 4 111
|
sylc |
|
113 |
7
|
adantr |
|
114 |
38
|
sselda |
|
115 |
113 114
|
ffvelcdmd |
|
116 |
109 1 2 110 112 30 6 115
|
gsummpt2d |
|
117 |
106 108 116
|
3eqtr3d |
|
118 |
44 104 117
|
3eqtr4rd |
|