| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumwmhm.b |
|
| 2 |
|
oveq2 |
|
| 3 |
|
eqid |
|
| 4 |
3
|
gsum0 |
|
| 5 |
2 4
|
eqtrdi |
|
| 6 |
5
|
fveq2d |
|
| 7 |
|
coeq2 |
|
| 8 |
|
co02 |
|
| 9 |
7 8
|
eqtrdi |
|
| 10 |
9
|
oveq2d |
|
| 11 |
|
eqid |
|
| 12 |
11
|
gsum0 |
|
| 13 |
10 12
|
eqtrdi |
|
| 14 |
6 13
|
eqeq12d |
|
| 15 |
|
mhmrcl1 |
|
| 16 |
15
|
ad2antrr |
|
| 17 |
|
eqid |
|
| 18 |
1 17
|
mndcl |
|
| 19 |
18
|
3expb |
|
| 20 |
16 19
|
sylan |
|
| 21 |
|
wrdf |
|
| 22 |
21
|
ad2antlr |
|
| 23 |
|
wrdfin |
|
| 24 |
23
|
adantl |
|
| 25 |
|
hashnncl |
|
| 26 |
24 25
|
syl |
|
| 27 |
26
|
biimpar |
|
| 28 |
27
|
nnzd |
|
| 29 |
|
fzoval |
|
| 30 |
28 29
|
syl |
|
| 31 |
30
|
feq2d |
|
| 32 |
22 31
|
mpbid |
|
| 33 |
32
|
ffvelcdmda |
|
| 34 |
|
nnm1nn0 |
|
| 35 |
27 34
|
syl |
|
| 36 |
|
nn0uz |
|
| 37 |
35 36
|
eleqtrdi |
|
| 38 |
|
eqid |
|
| 39 |
1 17 38
|
mhmlin |
|
| 40 |
39
|
3expb |
|
| 41 |
40
|
ad4ant14 |
|
| 42 |
32
|
ffnd |
|
| 43 |
|
fvco2 |
|
| 44 |
42 43
|
sylan |
|
| 45 |
44
|
eqcomd |
|
| 46 |
20 33 37 41 45
|
seqhomo |
|
| 47 |
1 17 16 37 32
|
gsumval2 |
|
| 48 |
47
|
fveq2d |
|
| 49 |
|
eqid |
|
| 50 |
|
mhmrcl2 |
|
| 51 |
50
|
ad2antrr |
|
| 52 |
1 49
|
mhmf |
|
| 53 |
52
|
ad2antrr |
|
| 54 |
|
fco |
|
| 55 |
53 32 54
|
syl2anc |
|
| 56 |
49 38 51 37 55
|
gsumval2 |
|
| 57 |
46 48 56
|
3eqtr4d |
|
| 58 |
3 11
|
mhm0 |
|
| 59 |
58
|
adantr |
|
| 60 |
14 57 59
|
pm2.61ne |
|