Description: Behavior of homomorphisms on finite monoidal sums. (Contributed by Stefan O'Rear, 27-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | gsumwmhm.b | |
|
Assertion | gsumwmhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumwmhm.b | |
|
2 | oveq2 | |
|
3 | eqid | |
|
4 | 3 | gsum0 | |
5 | 2 4 | eqtrdi | |
6 | 5 | fveq2d | |
7 | coeq2 | |
|
8 | co02 | |
|
9 | 7 8 | eqtrdi | |
10 | 9 | oveq2d | |
11 | eqid | |
|
12 | 11 | gsum0 | |
13 | 10 12 | eqtrdi | |
14 | 6 13 | eqeq12d | |
15 | mhmrcl1 | |
|
16 | 15 | ad2antrr | |
17 | eqid | |
|
18 | 1 17 | mndcl | |
19 | 18 | 3expb | |
20 | 16 19 | sylan | |
21 | wrdf | |
|
22 | 21 | ad2antlr | |
23 | wrdfin | |
|
24 | 23 | adantl | |
25 | hashnncl | |
|
26 | 24 25 | syl | |
27 | 26 | biimpar | |
28 | 27 | nnzd | |
29 | fzoval | |
|
30 | 28 29 | syl | |
31 | 30 | feq2d | |
32 | 22 31 | mpbid | |
33 | 32 | ffvelcdmda | |
34 | nnm1nn0 | |
|
35 | 27 34 | syl | |
36 | nn0uz | |
|
37 | 35 36 | eleqtrdi | |
38 | eqid | |
|
39 | 1 17 38 | mhmlin | |
40 | 39 | 3expb | |
41 | 40 | ad4ant14 | |
42 | 32 | ffnd | |
43 | fvco2 | |
|
44 | 42 43 | sylan | |
45 | 44 | eqcomd | |
46 | 20 33 37 41 45 | seqhomo | |
47 | 1 17 16 37 32 | gsumval2 | |
48 | 47 | fveq2d | |
49 | eqid | |
|
50 | mhmrcl2 | |
|
51 | 50 | ad2antrr | |
52 | 1 49 | mhmf | |
53 | 52 | ad2antrr | |
54 | fco | |
|
55 | 53 32 54 | syl2anc | |
56 | 49 38 51 37 55 | gsumval2 | |
57 | 46 48 56 | 3eqtr4d | |
58 | 3 11 | mhm0 | |
59 | 58 | adantr | |
60 | 14 57 59 | pm2.61ne | |