Metamath Proof Explorer


Theorem hdmapoc

Description: Express our constructed orthocomplement (polarity) in terms of the Hilbert space definition of orthocomplement. Lines 24 and 25 in Holland95 p. 14. (Contributed by NM, 17-Jun-2015)

Ref Expression
Hypotheses hdmapoc.h H=LHypK
hdmapoc.u U=DVecHKW
hdmapoc.v V=BaseU
hdmapoc.r R=ScalarU
hdmapoc.z 0˙=0R
hdmapoc.o O=ocHKW
hdmapoc.s S=HDMapKW
hdmapoc.k φKHLWH
hdmapoc.x φXV
Assertion hdmapoc φOX=yV|zXSzy=0˙

Proof

Step Hyp Ref Expression
1 hdmapoc.h H=LHypK
2 hdmapoc.u U=DVecHKW
3 hdmapoc.v V=BaseU
4 hdmapoc.r R=ScalarU
5 hdmapoc.z 0˙=0R
6 hdmapoc.o O=ocHKW
7 hdmapoc.s S=HDMapKW
8 hdmapoc.k φKHLWH
9 hdmapoc.x φXV
10 1 2 3 6 dochssv KHLWHXVOXV
11 8 9 10 syl2anc φOXV
12 11 sseld φyOXyV
13 12 pm4.71rd φyOXyVyOX
14 eqid LSubSpU=LSubSpU
15 eqid LSpanU=LSpanU
16 1 2 8 dvhlmod φULMod
17 16 adantr φyVULMod
18 1 2 3 14 6 dochlss KHLWHXVOXLSubSpU
19 8 9 18 syl2anc φOXLSubSpU
20 19 adantr φyVOXLSubSpU
21 simpr φyVyV
22 3 14 15 17 20 21 lspsnel5 φyVyOXLSpanUyOX
23 eqid DIsoHKW=DIsoHKW
24 8 adantr φyVKHLWH
25 1 2 3 15 23 dihlsprn KHLWHyVLSpanUyranDIsoHKW
26 24 21 25 syl2anc φyVLSpanUyranDIsoHKW
27 1 23 2 3 6 dochcl KHLWHXVOXranDIsoHKW
28 8 9 27 syl2anc φOXranDIsoHKW
29 28 adantr φyVOXranDIsoHKW
30 1 23 6 24 26 29 dochord φyVLSpanUyOXOOXOLSpanUy
31 21 snssd φyVyV
32 1 2 6 3 15 24 31 dochocsp φyVOLSpanUy=Oy
33 32 sseq2d φyVOOXOLSpanUyOOXOy
34 9 adantr φyVXV
35 1 23 2 3 6 dochcl KHLWHyVOyranDIsoHKW
36 24 31 35 syl2anc φyVOyranDIsoHKW
37 1 2 3 23 6 24 34 36 dochsscl φyVXOyOOXOy
38 33 37 bitr4d φyVOOXOLSpanUyXOy
39 22 30 38 3bitrd φyVyOXXOy
40 dfss3 XOyzXzOy
41 39 40 bitrdi φyVyOXzXzOy
42 8 ad2antrr φyVzXKHLWH
43 34 sselda φyVzXzV
44 simplr φyVzXyV
45 1 6 2 3 4 5 7 42 43 44 hdmapellkr φyVzXSzy=0˙yOz
46 1 6 2 3 42 44 43 dochsncom φyVzXyOzzOy
47 45 46 bitrd φyVzXSzy=0˙zOy
48 47 ralbidva φyVzXSzy=0˙zXzOy
49 41 48 bitr4d φyVyOXzXSzy=0˙
50 49 pm5.32da φyVyOXyVzXSzy=0˙
51 13 50 bitrd φyOXyVzXSzy=0˙
52 51 eqabdv φOX=y|yVzXSzy=0˙
53 df-rab yV|zXSzy=0˙=y|yVzXSzy=0˙
54 52 53 eqtr4di φOX=yV|zXSzy=0˙