Description: Express our constructed orthocomplement (polarity) in terms of the Hilbert space definition of orthocomplement. Lines 24 and 25 in Holland95 p. 14. (Contributed by NM, 17-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hdmapoc.h | |
|
hdmapoc.u | |
||
hdmapoc.v | |
||
hdmapoc.r | |
||
hdmapoc.z | |
||
hdmapoc.o | |
||
hdmapoc.s | |
||
hdmapoc.k | |
||
hdmapoc.x | |
||
Assertion | hdmapoc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmapoc.h | |
|
2 | hdmapoc.u | |
|
3 | hdmapoc.v | |
|
4 | hdmapoc.r | |
|
5 | hdmapoc.z | |
|
6 | hdmapoc.o | |
|
7 | hdmapoc.s | |
|
8 | hdmapoc.k | |
|
9 | hdmapoc.x | |
|
10 | 1 2 3 6 | dochssv | |
11 | 8 9 10 | syl2anc | |
12 | 11 | sseld | |
13 | 12 | pm4.71rd | |
14 | eqid | |
|
15 | eqid | |
|
16 | 1 2 8 | dvhlmod | |
17 | 16 | adantr | |
18 | 1 2 3 14 6 | dochlss | |
19 | 8 9 18 | syl2anc | |
20 | 19 | adantr | |
21 | simpr | |
|
22 | 3 14 15 17 20 21 | lspsnel5 | |
23 | eqid | |
|
24 | 8 | adantr | |
25 | 1 2 3 15 23 | dihlsprn | |
26 | 24 21 25 | syl2anc | |
27 | 1 23 2 3 6 | dochcl | |
28 | 8 9 27 | syl2anc | |
29 | 28 | adantr | |
30 | 1 23 6 24 26 29 | dochord | |
31 | 21 | snssd | |
32 | 1 2 6 3 15 24 31 | dochocsp | |
33 | 32 | sseq2d | |
34 | 9 | adantr | |
35 | 1 23 2 3 6 | dochcl | |
36 | 24 31 35 | syl2anc | |
37 | 1 2 3 23 6 24 34 36 | dochsscl | |
38 | 33 37 | bitr4d | |
39 | 22 30 38 | 3bitrd | |
40 | dfss3 | |
|
41 | 39 40 | bitrdi | |
42 | 8 | ad2antrr | |
43 | 34 | sselda | |
44 | simplr | |
|
45 | 1 6 2 3 4 5 7 42 43 44 | hdmapellkr | |
46 | 1 6 2 3 42 44 43 | dochsncom | |
47 | 45 46 | bitrd | |
48 | 47 | ralbidva | |
49 | 41 48 | bitr4d | |
50 | 49 | pm5.32da | |
51 | 13 50 | bitrd | |
52 | 51 | eqabdv | |
53 | df-rab | |
|
54 | 52 53 | eqtr4di | |