Metamath Proof Explorer


Theorem hdmaprnlem9N

Description: Part of proof of part 12 in Baer p. 49 line 21, s=S(t). TODO: we seem to be going back and forth with mapd11 and mapdcnv11N . Use better hypotheses and/or theorems? (Contributed by NM, 27-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmaprnlem1.h H=LHypK
hdmaprnlem1.u U=DVecHKW
hdmaprnlem1.v V=BaseU
hdmaprnlem1.n N=LSpanU
hdmaprnlem1.c C=LCDualKW
hdmaprnlem1.l L=LSpanC
hdmaprnlem1.m M=mapdKW
hdmaprnlem1.s S=HDMapKW
hdmaprnlem1.k φKHLWH
hdmaprnlem1.se φsDQ
hdmaprnlem1.ve φvV
hdmaprnlem1.e φMNv=Ls
hdmaprnlem1.ue φuV
hdmaprnlem1.un φ¬uNv
hdmaprnlem1.d D=BaseC
hdmaprnlem1.q Q=0C
hdmaprnlem1.o 0˙=0U
hdmaprnlem1.a ˙=+C
hdmaprnlem1.t2 φtNv0˙
hdmaprnlem1.p +˙=+U
hdmaprnlem1.pt φLSu˙s=MNu+˙t
Assertion hdmaprnlem9N φs=St

Proof

Step Hyp Ref Expression
1 hdmaprnlem1.h H=LHypK
2 hdmaprnlem1.u U=DVecHKW
3 hdmaprnlem1.v V=BaseU
4 hdmaprnlem1.n N=LSpanU
5 hdmaprnlem1.c C=LCDualKW
6 hdmaprnlem1.l L=LSpanC
7 hdmaprnlem1.m M=mapdKW
8 hdmaprnlem1.s S=HDMapKW
9 hdmaprnlem1.k φKHLWH
10 hdmaprnlem1.se φsDQ
11 hdmaprnlem1.ve φvV
12 hdmaprnlem1.e φMNv=Ls
13 hdmaprnlem1.ue φuV
14 hdmaprnlem1.un φ¬uNv
15 hdmaprnlem1.d D=BaseC
16 hdmaprnlem1.q Q=0C
17 hdmaprnlem1.o 0˙=0U
18 hdmaprnlem1.a ˙=+C
19 hdmaprnlem1.t2 φtNv0˙
20 hdmaprnlem1.p +˙=+U
21 hdmaprnlem1.pt φLSu˙s=MNu+˙t
22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 hdmaprnlem7N φs-CStLSu˙s
23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 hdmaprnlem8N φs-CStMNt
24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 hdmaprnlem4N φMNt=Ls
25 23 24 eleqtrd φs-CStLs
26 22 25 elind φs-CStLSu˙sLs
27 1 5 9 lcdlvec φCLVec
28 1 5 9 lcdlmod φCLMod
29 1 2 3 5 15 8 9 13 hdmapcl φSuD
30 10 eldifad φsD
31 15 18 lmodvacl CLModSuDsDSu˙sD
32 28 29 30 31 syl3anc φSu˙sD
33 eqid LSubSpC=LSubSpC
34 15 33 6 lspsncl CLModsDLsLSubSpC
35 28 30 34 syl2anc φLsLSubSpC
36 1 7 5 33 9 mapdrn2 φranM=LSubSpC
37 35 36 eleqtrrd φLsranM
38 1 7 9 37 mapdcnvid2 φMM-1Ls=Ls
39 12 38 eqtr4d φMNv=MM-1Ls
40 eqid LSubSpU=LSubSpU
41 1 2 9 dvhlmod φULMod
42 3 40 4 lspsncl ULModvVNvLSubSpU
43 41 11 42 syl2anc φNvLSubSpU
44 1 7 2 40 9 37 mapdcnvcl φM-1LsLSubSpU
45 1 2 40 7 9 43 44 mapd11 φMNv=MM-1LsNv=M-1Ls
46 39 45 mpbid φNv=M-1Ls
47 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 hdmaprnlem3N φNvM-1LSu˙s
48 46 47 eqnetrrd φM-1LsM-1LSu˙s
49 15 33 6 lspsncl CLModSu˙sDLSu˙sLSubSpC
50 28 32 49 syl2anc φLSu˙sLSubSpC
51 50 36 eleqtrrd φLSu˙sranM
52 1 7 9 37 51 mapdcnv11N φM-1Ls=M-1LSu˙sLs=LSu˙s
53 52 necon3bid φM-1LsM-1LSu˙sLsLSu˙s
54 48 53 mpbid φLsLSu˙s
55 54 necomd φLSu˙sLs
56 15 16 6 27 32 30 55 lspdisj2 φLSu˙sLs=Q
57 26 56 eleqtrd φs-CStQ
58 elsni s-CStQs-CSt=Q
59 57 58 syl φs-CSt=Q
60 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 hdmaprnlem4tN φtV
61 1 2 3 5 15 8 9 60 hdmapcl φStD
62 eqid -C=-C
63 15 16 62 lmodsubeq0 CLModsDStDs-CSt=Qs=St
64 28 30 61 63 syl3anc φs-CSt=Qs=St
65 59 64 mpbid φs=St