Description: Part of proof of part 12 in Baer p. 49 line 21, s=S(t). TODO: we seem to be going back and forth with mapd11 and mapdcnv11N . Use better hypotheses and/or theorems? (Contributed by NM, 27-May-2015) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hdmaprnlem1.h | |
|
hdmaprnlem1.u | |
||
hdmaprnlem1.v | |
||
hdmaprnlem1.n | |
||
hdmaprnlem1.c | |
||
hdmaprnlem1.l | |
||
hdmaprnlem1.m | |
||
hdmaprnlem1.s | |
||
hdmaprnlem1.k | |
||
hdmaprnlem1.se | |
||
hdmaprnlem1.ve | |
||
hdmaprnlem1.e | |
||
hdmaprnlem1.ue | |
||
hdmaprnlem1.un | |
||
hdmaprnlem1.d | |
||
hdmaprnlem1.q | |
||
hdmaprnlem1.o | |
||
hdmaprnlem1.a | |
||
hdmaprnlem1.t2 | |
||
hdmaprnlem1.p | |
||
hdmaprnlem1.pt | |
||
Assertion | hdmaprnlem9N | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmaprnlem1.h | |
|
2 | hdmaprnlem1.u | |
|
3 | hdmaprnlem1.v | |
|
4 | hdmaprnlem1.n | |
|
5 | hdmaprnlem1.c | |
|
6 | hdmaprnlem1.l | |
|
7 | hdmaprnlem1.m | |
|
8 | hdmaprnlem1.s | |
|
9 | hdmaprnlem1.k | |
|
10 | hdmaprnlem1.se | |
|
11 | hdmaprnlem1.ve | |
|
12 | hdmaprnlem1.e | |
|
13 | hdmaprnlem1.ue | |
|
14 | hdmaprnlem1.un | |
|
15 | hdmaprnlem1.d | |
|
16 | hdmaprnlem1.q | |
|
17 | hdmaprnlem1.o | |
|
18 | hdmaprnlem1.a | |
|
19 | hdmaprnlem1.t2 | |
|
20 | hdmaprnlem1.p | |
|
21 | hdmaprnlem1.pt | |
|
22 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | hdmaprnlem7N | |
23 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | hdmaprnlem8N | |
24 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | hdmaprnlem4N | |
25 | 23 24 | eleqtrd | |
26 | 22 25 | elind | |
27 | 1 5 9 | lcdlvec | |
28 | 1 5 9 | lcdlmod | |
29 | 1 2 3 5 15 8 9 13 | hdmapcl | |
30 | 10 | eldifad | |
31 | 15 18 | lmodvacl | |
32 | 28 29 30 31 | syl3anc | |
33 | eqid | |
|
34 | 15 33 6 | lspsncl | |
35 | 28 30 34 | syl2anc | |
36 | 1 7 5 33 9 | mapdrn2 | |
37 | 35 36 | eleqtrrd | |
38 | 1 7 9 37 | mapdcnvid2 | |
39 | 12 38 | eqtr4d | |
40 | eqid | |
|
41 | 1 2 9 | dvhlmod | |
42 | 3 40 4 | lspsncl | |
43 | 41 11 42 | syl2anc | |
44 | 1 7 2 40 9 37 | mapdcnvcl | |
45 | 1 2 40 7 9 43 44 | mapd11 | |
46 | 39 45 | mpbid | |
47 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | hdmaprnlem3N | |
48 | 46 47 | eqnetrrd | |
49 | 15 33 6 | lspsncl | |
50 | 28 32 49 | syl2anc | |
51 | 50 36 | eleqtrrd | |
52 | 1 7 9 37 51 | mapdcnv11N | |
53 | 52 | necon3bid | |
54 | 48 53 | mpbid | |
55 | 54 | necomd | |
56 | 15 16 6 27 32 30 55 | lspdisj2 | |
57 | 26 56 | eleqtrd | |
58 | elsni | |
|
59 | 57 58 | syl | |
60 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | hdmaprnlem4tN | |
61 | 1 2 3 5 15 8 9 60 | hdmapcl | |
62 | eqid | |
|
63 | 15 16 62 | lmodsubeq0 | |
64 | 28 30 61 63 | syl3anc | |
65 | 59 64 | mpbid | |