Metamath Proof Explorer


Theorem hgmapvvlem1

Description: Involution property of scalar sigma map. Line 10 in Baer p. 111, t sigma squared = t. Our E , C , D , Y , X correspond to Baer's w, h, k, s, t. (Contributed by NM, 13-Jun-2015)

Ref Expression
Hypotheses hdmapglem6.h H=LHypK
hdmapglem6.e E=IBaseKILTrnKW
hdmapglem6.o O=ocHKW
hdmapglem6.u U=DVecHKW
hdmapglem6.v V=BaseU
hdmapglem6.q ·˙=U
hdmapglem6.r R=ScalarU
hdmapglem6.b B=BaseR
hdmapglem6.t ×˙=R
hdmapglem6.z 0˙=0R
hdmapglem6.i 1˙=1R
hdmapglem6.n N=invrR
hdmapglem6.s S=HDMapKW
hdmapglem6.g G=HGMapKW
hdmapglem6.k φKHLWH
hdmapglem6.x φXB0˙
hdmapglem6.c φCOE
hdmapglem6.d φDOE
hdmapglem6.cd φSDC=1˙
hdmapglem6.y φYB0˙
hdmapglem6.yx φY×˙GX=1˙
Assertion hgmapvvlem1 φGGX=X

Proof

Step Hyp Ref Expression
1 hdmapglem6.h H=LHypK
2 hdmapglem6.e E=IBaseKILTrnKW
3 hdmapglem6.o O=ocHKW
4 hdmapglem6.u U=DVecHKW
5 hdmapglem6.v V=BaseU
6 hdmapglem6.q ·˙=U
7 hdmapglem6.r R=ScalarU
8 hdmapglem6.b B=BaseR
9 hdmapglem6.t ×˙=R
10 hdmapglem6.z 0˙=0R
11 hdmapglem6.i 1˙=1R
12 hdmapglem6.n N=invrR
13 hdmapglem6.s S=HDMapKW
14 hdmapglem6.g G=HGMapKW
15 hdmapglem6.k φKHLWH
16 hdmapglem6.x φXB0˙
17 hdmapglem6.c φCOE
18 hdmapglem6.d φDOE
19 hdmapglem6.cd φSDC=1˙
20 hdmapglem6.y φYB0˙
21 hdmapglem6.yx φY×˙GX=1˙
22 1 4 15 dvhlmod φULMod
23 7 lmodring ULModRRing
24 22 23 syl φRRing
25 16 eldifad φXB
26 1 4 7 8 14 15 25 hgmapcl φGXB
27 1 4 7 8 14 15 26 hgmapcl φGGXB
28 20 eldifad φYB
29 1 4 7 8 14 15 28 hgmapcl φGYB
30 1 4 15 dvhlvec φULVec
31 7 lvecdrng ULVecRDivRing
32 30 31 syl φRDivRing
33 eldifsni YB0˙Y0˙
34 20 33 syl φY0˙
35 1 4 7 8 10 14 15 28 hgmapeq0 φGY=0˙Y=0˙
36 35 necon3bid φGY0˙Y0˙
37 34 36 mpbird φGY0˙
38 8 10 12 drnginvrcl RDivRingGYBGY0˙NGYB
39 32 29 37 38 syl3anc φNGYB
40 8 9 ringass RRingGGXBGYBNGYBGGX×˙GY×˙NGY=GGX×˙GY×˙NGY
41 24 27 29 39 40 syl13anc φGGX×˙GY×˙NGY=GGX×˙GY×˙NGY
42 8 10 9 11 12 drnginvrr RDivRingGYBGY0˙GY×˙NGY=1˙
43 32 29 37 42 syl3anc φGY×˙NGY=1˙
44 43 oveq2d φGGX×˙GY×˙NGY=GGX×˙1˙
45 8 9 11 ringridm RRingGGXBGGX×˙1˙=GGX
46 24 27 45 syl2anc φGGX×˙1˙=GGX
47 41 44 46 3eqtrrd φGGX=GGX×˙GY×˙NGY
48 21 fveq2d φGY×˙GX=G1˙
49 1 4 7 8 9 14 15 28 26 hgmapmul φGY×˙GX=GGX×˙GY
50 48 49 eqtr3d φG1˙=GGX×˙GY
51 19 fveq2d φGSDC=G1˙
52 eqid +U=+U
53 eqid -U=-U
54 1 2 3 4 5 52 53 6 7 8 9 10 13 14 15 17 18 28 25 hdmapglem5 φGSDC=SCD
55 51 54 eqtr3d φG1˙=SCD
56 50 55 eqtr3d φGGX×˙GY=SCD
57 21 19 eqtr4d φY×˙GX=SDC
58 1 2 3 4 5 52 53 6 7 8 9 10 13 14 15 17 18 28 25 57 hdmapinvlem4 φX×˙GY=SCD
59 56 58 eqtr4d φGGX×˙GY=X×˙GY
60 59 oveq1d φGGX×˙GY×˙NGY=X×˙GY×˙NGY
61 8 9 ringass RRingXBGYBNGYBX×˙GY×˙NGY=X×˙GY×˙NGY
62 24 25 29 39 61 syl13anc φX×˙GY×˙NGY=X×˙GY×˙NGY
63 43 oveq2d φX×˙GY×˙NGY=X×˙1˙
64 8 9 11 ringridm RRingXBX×˙1˙=X
65 24 25 64 syl2anc φX×˙1˙=X
66 62 63 65 3eqtrd φX×˙GY×˙NGY=X
67 47 60 66 3eqtrd φGGX=X