Metamath Proof Explorer


Theorem hsmexlem4

Description: Lemma for hsmex . The core induction, establishing bounds on the order types of iterated unions of the initial set. (Contributed by Stefan O'Rear, 14-Feb-2015)

Ref Expression
Hypotheses hsmexlem4.x XV
hsmexlem4.h H=reczVhar𝒫X×zhar𝒫Xω
hsmexlem4.u U=xVrecyVyxω
hsmexlem4.s S=aR1On|bTCabX
hsmexlem4.o O=OrdIsoErankUdc
Assertion hsmexlem4 cωdSdomOHc

Proof

Step Hyp Ref Expression
1 hsmexlem4.x XV
2 hsmexlem4.h H=reczVhar𝒫X×zhar𝒫Xω
3 hsmexlem4.u U=xVrecyVyxω
4 hsmexlem4.s S=aR1On|bTCabX
5 hsmexlem4.o O=OrdIsoErankUdc
6 fveq2 c=Udc=Ud
7 6 imaeq2d c=rankUdc=rankUd
8 oieq2 rankUdc=rankUdOrdIsoErankUdc=OrdIsoErankUd
9 7 8 syl c=OrdIsoErankUdc=OrdIsoErankUd
10 5 9 eqtrid c=O=OrdIsoErankUd
11 10 dmeqd c=domO=domOrdIsoErankUd
12 fveq2 c=Hc=H
13 11 12 eleq12d c=domOHcdomOrdIsoErankUdH
14 13 ralbidv c=dSdomOHcdSdomOrdIsoErankUdH
15 fveq2 c=eUdc=Ude
16 15 imaeq2d c=erankUdc=rankUde
17 oieq2 rankUdc=rankUdeOrdIsoErankUdc=OrdIsoErankUde
18 16 17 syl c=eOrdIsoErankUdc=OrdIsoErankUde
19 5 18 eqtrid c=eO=OrdIsoErankUde
20 19 dmeqd c=edomO=domOrdIsoErankUde
21 fveq2 c=eHc=He
22 20 21 eleq12d c=edomOHcdomOrdIsoErankUdeHe
23 22 ralbidv c=edSdomOHcdSdomOrdIsoErankUdeHe
24 fveq2 c=suceUdc=Udsuce
25 24 imaeq2d c=sucerankUdc=rankUdsuce
26 oieq2 rankUdc=rankUdsuceOrdIsoErankUdc=OrdIsoErankUdsuce
27 25 26 syl c=suceOrdIsoErankUdc=OrdIsoErankUdsuce
28 5 27 eqtrid c=suceO=OrdIsoErankUdsuce
29 28 dmeqd c=sucedomO=domOrdIsoErankUdsuce
30 fveq2 c=suceHc=Hsuce
31 29 30 eleq12d c=sucedomOHcdomOrdIsoErankUdsuceHsuce
32 31 ralbidv c=sucedSdomOHcdSdomOrdIsoErankUdsuceHsuce
33 imassrn rankUdranrank
34 rankf rank:R1OnOn
35 frn rank:R1OnOnranrankOn
36 34 35 ax-mp ranrankOn
37 33 36 sstri rankUdOn
38 3 ituni0 dVUd=d
39 38 elv Ud=d
40 39 imaeq2i rankUd=rankd
41 ffun rank:R1OnOnFunrank
42 34 41 ax-mp Funrank
43 vex dV
44 wdomimag FunrankdVrankd*d
45 42 43 44 mp2an rankd*d
46 sneq a=da=d
47 46 fveq2d a=dTCa=TCd
48 47 raleqdv a=dbTCabXbTCdbX
49 48 4 elrab2 dSdR1OnbTCdbX
50 49 simprbi dSbTCdbX
51 vsnex dV
52 tcid dVdTCd
53 51 52 ax-mp dTCd
54 vsnid dd
55 53 54 sselii dTCd
56 breq1 b=dbXdX
57 56 rspcv dTCdbTCdbXdX
58 55 57 ax-mp bTCdbXdX
59 domwdom dXd*X
60 50 58 59 3syl dSd*X
61 wdomtr rankd*dd*Xrankd*X
62 45 60 61 sylancr dSrankd*X
63 40 62 eqbrtrid dSrankUd*X
64 eqid OrdIsoErankUd=OrdIsoErankUd
65 64 hsmexlem1 rankUdOnrankUd*XdomOrdIsoErankUdhar𝒫X
66 37 63 65 sylancr dSdomOrdIsoErankUdhar𝒫X
67 2 hsmexlem7 H=har𝒫X
68 66 67 eleqtrrdi dSdomOrdIsoErankUdH
69 68 rgen dSdomOrdIsoErankUdH
70 nfra1 ddSdomOrdIsoErankUdeHe
71 nfv deω
72 70 71 nfan ddSdomOrdIsoErankUdeHeeω
73 3 ituniiun dVUdsuce=fdUfe
74 73 elv Udsuce=fdUfe
75 74 imaeq2i rankUdsuce=rankfdUfe
76 imaiun rankfdUfe=fdrankUfe
77 75 76 eqtri rankUdsuce=fdrankUfe
78 oieq2 rankUdsuce=fdrankUfeOrdIsoErankUdsuce=OrdIsoEfdrankUfe
79 77 78 ax-mp OrdIsoErankUdsuce=OrdIsoEfdrankUfe
80 79 dmeqi domOrdIsoErankUdsuce=domOrdIsoEfdrankUfe
81 60 ad2antll dSdomOrdIsoErankUdeHeeωdSd*X
82 2 hsmexlem9 eωHeOn
83 82 ad2antrl dSdomOrdIsoErankUdeHeeωdSHeOn
84 fveq2 d=fUd=Uf
85 84 fveq1d d=fUde=Ufe
86 85 imaeq2d d=frankUde=rankUfe
87 oieq2 rankUde=rankUfeOrdIsoErankUde=OrdIsoErankUfe
88 86 87 syl d=fOrdIsoErankUde=OrdIsoErankUfe
89 88 dmeqd d=fdomOrdIsoErankUde=domOrdIsoErankUfe
90 89 eleq1d d=fdomOrdIsoErankUdeHedomOrdIsoErankUfeHe
91 simpll dSdomOrdIsoErankUdeHeeωdSfddSdomOrdIsoErankUdeHe
92 4 ssrab3 SR1On
93 92 sseli dSdR1On
94 r1elssi dR1OndR1On
95 93 94 syl dSdR1On
96 95 sselda dSfdfR1On
97 snssi fdfd
98 43 tcss fdTCfTCd
99 97 98 syl fdTCfTCd
100 51 tcel ddTCdTCd
101 54 100 mp1i fdTCdTCd
102 99 101 sstrd fdTCfTCd
103 ssralv TCfTCdbTCdbXbTCfbX
104 102 103 syl fdbTCdbXbTCfbX
105 50 104 mpan9 dSfdbTCfbX
106 sneq a=fa=f
107 106 fveq2d a=fTCa=TCf
108 107 raleqdv a=fbTCabXbTCfbX
109 108 4 elrab2 fSfR1OnbTCfbX
110 96 105 109 sylanbrc dSfdfS
111 110 adantll eωdSfdfS
112 111 adantll dSdomOrdIsoErankUdeHeeωdSfdfS
113 90 91 112 rspcdva dSdomOrdIsoErankUdeHeeωdSfddomOrdIsoErankUfeHe
114 imassrn rankUferanrank
115 114 36 sstri rankUfeOn
116 fvex UfeV
117 116 funimaex FunrankrankUfeV
118 42 117 ax-mp rankUfeV
119 118 elpw rankUfe𝒫OnrankUfeOn
120 115 119 mpbir rankUfe𝒫On
121 113 120 jctil dSdomOrdIsoErankUdeHeeωdSfdrankUfe𝒫OndomOrdIsoErankUfeHe
122 121 ralrimiva dSdomOrdIsoErankUdeHeeωdSfdrankUfe𝒫OndomOrdIsoErankUfeHe
123 eqid OrdIsoErankUfe=OrdIsoErankUfe
124 eqid OrdIsoEfdrankUfe=OrdIsoEfdrankUfe
125 123 124 hsmexlem3 d*XHeOnfdrankUfe𝒫OndomOrdIsoErankUfeHedomOrdIsoEfdrankUfehar𝒫X×He
126 81 83 122 125 syl21anc dSdomOrdIsoErankUdeHeeωdSdomOrdIsoEfdrankUfehar𝒫X×He
127 80 126 eqeltrid dSdomOrdIsoErankUdeHeeωdSdomOrdIsoErankUdsucehar𝒫X×He
128 2 hsmexlem8 eωHsuce=har𝒫X×He
129 128 ad2antrl dSdomOrdIsoErankUdeHeeωdSHsuce=har𝒫X×He
130 127 129 eleqtrrd dSdomOrdIsoErankUdeHeeωdSdomOrdIsoErankUdsuceHsuce
131 130 expr dSdomOrdIsoErankUdeHeeωdSdomOrdIsoErankUdsuceHsuce
132 72 131 ralrimi dSdomOrdIsoErankUdeHeeωdSdomOrdIsoErankUdsuceHsuce
133 132 expcom eωdSdomOrdIsoErankUdeHedSdomOrdIsoErankUdsuceHsuce
134 14 23 32 69 133 finds1 cωdSdomOHc
135 134 r19.21bi cωdSdomOHc