Description: Lemma for icccmp . (Contributed by Mario Carneiro, 18-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | icccmp.1 | |
|
icccmp.2 | |
||
icccmp.3 | |
||
icccmp.4 | |
||
icccmp.5 | |
||
icccmp.6 | |
||
icccmp.7 | |
||
icccmp.8 | |
||
icccmp.9 | |
||
Assertion | icccmplem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | icccmp.1 | |
|
2 | icccmp.2 | |
|
3 | icccmp.3 | |
|
4 | icccmp.4 | |
|
5 | icccmp.5 | |
|
6 | icccmp.6 | |
|
7 | icccmp.7 | |
|
8 | icccmp.8 | |
|
9 | icccmp.9 | |
|
10 | 5 | rexrd | |
11 | 6 | rexrd | |
12 | lbicc2 | |
|
13 | 10 11 7 12 | syl3anc | |
14 | 9 13 | sseldd | |
15 | eluni2 | |
|
16 | 14 15 | sylib | |
17 | snssi | |
|
18 | 17 | ad2antrl | |
19 | snex | |
|
20 | 19 | elpw | |
21 | 18 20 | sylibr | |
22 | snfi | |
|
23 | 22 | a1i | |
24 | 21 23 | elind | |
25 | 10 | adantr | |
26 | iccid | |
|
27 | 25 26 | syl | |
28 | snssi | |
|
29 | 28 | ad2antll | |
30 | 27 29 | eqsstrd | |
31 | unieq | |
|
32 | unisnv | |
|
33 | 31 32 | eqtrdi | |
34 | 33 | sseq2d | |
35 | 34 | rspcev | |
36 | 24 30 35 | syl2anc | |
37 | 16 36 | rexlimddv | |
38 | oveq2 | |
|
39 | 38 | sseq1d | |
40 | 39 | rexbidv | |
41 | 40 4 | elrab2 | |
42 | 13 37 41 | sylanbrc | |
43 | 4 | ssrab3 | |
44 | 43 | sseli | |
45 | elicc2 | |
|
46 | 5 6 45 | syl2anc | |
47 | 46 | biimpa | |
48 | 47 | simp3d | |
49 | 44 48 | sylan2 | |
50 | 49 | ralrimiva | |
51 | 42 50 | jca | |