Metamath Proof Explorer


Theorem icccmplem1

Description: Lemma for icccmp . (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Hypotheses icccmp.1 J=topGenran.
icccmp.2 T=J𝑡AB
icccmp.3 D=abs2
icccmp.4 S=xAB|z𝒫UFinAxz
icccmp.5 φA
icccmp.6 φB
icccmp.7 φAB
icccmp.8 φUJ
icccmp.9 φABU
Assertion icccmplem1 φASySyB

Proof

Step Hyp Ref Expression
1 icccmp.1 J=topGenran.
2 icccmp.2 T=J𝑡AB
3 icccmp.3 D=abs2
4 icccmp.4 S=xAB|z𝒫UFinAxz
5 icccmp.5 φA
6 icccmp.6 φB
7 icccmp.7 φAB
8 icccmp.8 φUJ
9 icccmp.9 φABU
10 5 rexrd φA*
11 6 rexrd φB*
12 lbicc2 A*B*ABAAB
13 10 11 7 12 syl3anc φAAB
14 9 13 sseldd φAU
15 eluni2 AUuUAu
16 14 15 sylib φuUAu
17 snssi uUuU
18 17 ad2antrl φuUAuuU
19 snex uV
20 19 elpw u𝒫UuU
21 18 20 sylibr φuUAuu𝒫U
22 snfi uFin
23 22 a1i φuUAuuFin
24 21 23 elind φuUAuu𝒫UFin
25 10 adantr φuUAuA*
26 iccid A*AA=A
27 25 26 syl φuUAuAA=A
28 snssi AuAu
29 28 ad2antll φuUAuAu
30 27 29 eqsstrd φuUAuAAu
31 unieq z=uz=u
32 unisnv u=u
33 31 32 eqtrdi z=uz=u
34 33 sseq2d z=uAAzAAu
35 34 rspcev u𝒫UFinAAuz𝒫UFinAAz
36 24 30 35 syl2anc φuUAuz𝒫UFinAAz
37 16 36 rexlimddv φz𝒫UFinAAz
38 oveq2 x=AAx=AA
39 38 sseq1d x=AAxzAAz
40 39 rexbidv x=Az𝒫UFinAxzz𝒫UFinAAz
41 40 4 elrab2 ASAABz𝒫UFinAAz
42 13 37 41 sylanbrc φAS
43 4 ssrab3 SAB
44 43 sseli ySyAB
45 elicc2 AByAByAyyB
46 5 6 45 syl2anc φyAByAyyB
47 46 biimpa φyAByAyyB
48 47 simp3d φyAByB
49 44 48 sylan2 φySyB
50 49 ralrimiva φySyB
51 42 50 jca φASySyB