| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idomnnzgmulnz.1 |  | 
						
							| 2 |  | idomnnzgmulnz.2 |  | 
						
							| 3 |  | idomnnzgmulnz.3 |  | 
						
							| 4 |  | idomnnzgmulnz.4 |  | 
						
							| 5 |  | idomnnzgmulnz.5 |  | 
						
							| 6 |  | mpteq1 |  | 
						
							| 7 | 6 | oveq2d |  | 
						
							| 8 | 7 | neeq1d |  | 
						
							| 9 |  | mpteq1 |  | 
						
							| 10 | 9 | oveq2d |  | 
						
							| 11 | 10 | neeq1d |  | 
						
							| 12 |  | mpteq1 |  | 
						
							| 13 | 12 | oveq2d |  | 
						
							| 14 | 13 | neeq1d |  | 
						
							| 15 |  | mpteq1 |  | 
						
							| 16 | 15 | oveq2d |  | 
						
							| 17 | 16 | neeq1d |  | 
						
							| 18 |  | mpt0 |  | 
						
							| 19 | 18 | a1i |  | 
						
							| 20 | 19 | oveq2d |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 | 21 | gsum0 |  | 
						
							| 23 | 22 | a1i |  | 
						
							| 24 | 20 23 | eqtrd |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 | 1 25 | ringidval |  | 
						
							| 27 | 26 | eqcomi |  | 
						
							| 28 | 27 | a1i |  | 
						
							| 29 |  | isidom |  | 
						
							| 30 | 29 | simprbi |  | 
						
							| 31 |  | domnnzr |  | 
						
							| 32 |  | eqid |  | 
						
							| 33 | 25 32 | nzrnz |  | 
						
							| 34 | 2 30 31 33 | 4syl |  | 
						
							| 35 | 28 34 | eqnetrd |  | 
						
							| 36 | 24 35 | eqnetrd |  | 
						
							| 37 |  | nfcv |  | 
						
							| 38 |  | nfcsb1v |  | 
						
							| 39 |  | csbeq1a |  | 
						
							| 40 | 37 38 39 | cbvmpt |  | 
						
							| 41 | 40 | oveq2i |  | 
						
							| 42 | 41 | a1i |  | 
						
							| 43 |  | eqid |  | 
						
							| 44 |  | eqid |  | 
						
							| 45 | 29 | simplbi |  | 
						
							| 46 | 2 45 | syl |  | 
						
							| 47 | 1 | crngmgp |  | 
						
							| 48 | 46 47 | syl |  | 
						
							| 49 | 48 | adantr |  | 
						
							| 50 | 49 | adantr |  | 
						
							| 51 | 3 | adantr |  | 
						
							| 52 |  | simprl |  | 
						
							| 53 | 51 52 | ssfid |  | 
						
							| 54 | 53 | adantr |  | 
						
							| 55 | 52 | ad2antrr |  | 
						
							| 56 |  | simpr |  | 
						
							| 57 | 55 56 | sseldd |  | 
						
							| 58 | 4 | ralrimiva |  | 
						
							| 59 | 58 | ad3antrrr |  | 
						
							| 60 |  | rspcsbela |  | 
						
							| 61 | 57 59 60 | syl2anc |  | 
						
							| 62 |  | eqid |  | 
						
							| 63 | 1 62 | mgpbas |  | 
						
							| 64 | 63 | a1i |  | 
						
							| 65 | 61 64 | eleqtrd |  | 
						
							| 66 |  | eldifi |  | 
						
							| 67 | 66 | adantl |  | 
						
							| 68 | 67 | adantl |  | 
						
							| 69 | 68 | adantr |  | 
						
							| 70 |  | eldifn |  | 
						
							| 71 | 70 | adantl |  | 
						
							| 72 | 71 | adantl |  | 
						
							| 73 | 72 | adantr |  | 
						
							| 74 | 58 | ad2antrr |  | 
						
							| 75 |  | rspcsbela |  | 
						
							| 76 | 69 74 75 | syl2anc |  | 
						
							| 77 | 63 | a1i |  | 
						
							| 78 | 76 77 | eleqtrd |  | 
						
							| 79 |  | csbeq1 |  | 
						
							| 80 | 43 44 50 54 65 69 73 78 79 | gsumunsn |  | 
						
							| 81 | 42 80 | eqtrd |  | 
						
							| 82 | 2 30 | syl |  | 
						
							| 83 | 82 | adantr |  | 
						
							| 84 | 83 | adantr |  | 
						
							| 85 | 61 | ralrimiva |  | 
						
							| 86 | 63 50 54 85 | gsummptcl |  | 
						
							| 87 | 39 | equcoms |  | 
						
							| 88 | 87 | eqcomd |  | 
						
							| 89 | 38 37 88 | cbvmpt |  | 
						
							| 90 | 89 | a1i |  | 
						
							| 91 | 90 | oveq2d |  | 
						
							| 92 |  | simpr |  | 
						
							| 93 | 91 92 | eqnetrd |  | 
						
							| 94 | 86 93 | jca |  | 
						
							| 95 | 5 | ralrimiva |  | 
						
							| 96 | 95 | adantr |  | 
						
							| 97 |  | rspcsbnea |  | 
						
							| 98 | 68 96 97 | syl2anc |  | 
						
							| 99 | 98 | adantr |  | 
						
							| 100 | 76 99 | jca |  | 
						
							| 101 |  | eqid |  | 
						
							| 102 | 1 101 | mgpplusg |  | 
						
							| 103 | 102 | eqcomi |  | 
						
							| 104 | 62 103 32 | domnmuln0 |  | 
						
							| 105 | 84 94 100 104 | syl3anc |  | 
						
							| 106 | 81 105 | eqnetrd |  | 
						
							| 107 | 106 | ex |  | 
						
							| 108 | 8 11 14 17 36 107 3 | findcard2d |  |