Metamath Proof Explorer


Theorem imasubc

Description: An image of a full functor is a full subcategory. Remark 4.2(3) of Adamek p. 48. (Contributed by Zhi Wang, 7-Nov-2025)

Ref Expression
Hypotheses imasubc.s S = F A
imasubc.h H = Hom D
imasubc.k K = x S , y S p F -1 x × F -1 y G p H p
imasubc.f φ F D Full E G
imasubc.c C = Base E
imasubc.j J = Hom 𝑓 E
Assertion imasubc φ K Fn S × S S C J S × S = K

Proof

Step Hyp Ref Expression
1 imasubc.s S = F A
2 imasubc.h H = Hom D
3 imasubc.k K = x S , y S p F -1 x × F -1 y G p H p
4 imasubc.f φ F D Full E G
5 imasubc.c C = Base E
6 imasubc.j J = Hom 𝑓 E
7 relfull Rel D Full E
8 7 brrelex1i F D Full E G F V
9 4 8 syl φ F V
10 9 9 3 imasubclem2 φ K Fn S × S
11 eqid Base D = Base D
12 fullfunc D Full E D Func E
13 12 ssbri F D Full E G F D Func E G
14 4 13 syl φ F D Func E G
15 11 5 14 funcf1 φ F : Base D C
16 15 fimassd φ F A C
17 1 16 eqsstrid φ S C
18 simprl φ z S w S z S
19 18 1 eleqtrdi φ z S w S z F A
20 inisegn0a z F A F -1 z
21 19 20 syl φ z S w S F -1 z
22 simprr φ z S w S w S
23 22 1 eleqtrdi φ z S w S w F A
24 inisegn0a w F A F -1 w
25 23 24 syl φ z S w S F -1 w
26 21 25 jca φ z S w S F -1 z F -1 w
27 xpnz F -1 z F -1 w F -1 z × F -1 w
28 26 27 sylib φ z S w S F -1 z × F -1 w
29 15 ffnd φ F Fn Base D
30 29 ad2antrr φ z S w S m F -1 z n F -1 w F Fn Base D
31 simprl φ z S w S m F -1 z n F -1 w m F -1 z
32 fniniseg F Fn Base D m F -1 z m Base D F m = z
33 32 biimpa F Fn Base D m F -1 z m Base D F m = z
34 30 31 33 syl2anc φ z S w S m F -1 z n F -1 w m Base D F m = z
35 34 simprd φ z S w S m F -1 z n F -1 w F m = z
36 simprr φ z S w S m F -1 z n F -1 w n F -1 w
37 fniniseg F Fn Base D n F -1 w n Base D F n = w
38 37 biimpa F Fn Base D n F -1 w n Base D F n = w
39 30 36 38 syl2anc φ z S w S m F -1 z n F -1 w n Base D F n = w
40 39 simprd φ z S w S m F -1 z n F -1 w F n = w
41 35 40 oveq12d φ z S w S m F -1 z n F -1 w F m Hom E F n = z Hom E w
42 eqid Hom E = Hom E
43 4 ad2antrr φ z S w S m F -1 z n F -1 w F D Full E G
44 34 simpld φ z S w S m F -1 z n F -1 w m Base D
45 39 simpld φ z S w S m F -1 z n F -1 w n Base D
46 11 42 2 43 44 45 fullfo φ z S w S m F -1 z n F -1 w m G n : m H n onto F m Hom E F n
47 foeq3 F m Hom E F n = z Hom E w m G n : m H n onto F m Hom E F n m G n : m H n onto z Hom E w
48 47 biimpa F m Hom E F n = z Hom E w m G n : m H n onto F m Hom E F n m G n : m H n onto z Hom E w
49 41 46 48 syl2anc φ z S w S m F -1 z n F -1 w m G n : m H n onto z Hom E w
50 foima m G n : m H n onto z Hom E w m G n m H n = z Hom E w
51 49 50 syl φ z S w S m F -1 z n F -1 w m G n m H n = z Hom E w
52 51 ralrimivva φ z S w S m F -1 z n F -1 w m G n m H n = z Hom E w
53 fveq2 p = m n G p = G m n
54 df-ov m G n = G m n
55 53 54 eqtr4di p = m n G p = m G n
56 fveq2 p = m n H p = H m n
57 df-ov m H n = H m n
58 56 57 eqtr4di p = m n H p = m H n
59 55 58 imaeq12d p = m n G p H p = m G n m H n
60 59 eqeq1d p = m n G p H p = z Hom E w m G n m H n = z Hom E w
61 60 ralxp p F -1 z × F -1 w G p H p = z Hom E w m F -1 z n F -1 w m G n m H n = z Hom E w
62 52 61 sylibr φ z S w S p F -1 z × F -1 w G p H p = z Hom E w
63 iuneqconst2 F -1 z × F -1 w p F -1 z × F -1 w G p H p = z Hom E w p F -1 z × F -1 w G p H p = z Hom E w
64 28 62 63 syl2anc φ z S w S p F -1 z × F -1 w G p H p = z Hom E w
65 9 adantr φ z S w S F V
66 65 65 18 22 3 imasubclem3 φ z S w S z K w = p F -1 z × F -1 w G p H p
67 17 adantr φ z S w S S C
68 67 18 sseldd φ z S w S z C
69 67 22 sseldd φ z S w S w C
70 6 5 42 68 69 homfval φ z S w S z J w = z Hom E w
71 64 66 70 3eqtr4rd φ z S w S z J w = z K w
72 71 ralrimivva φ z S w S z J w = z K w
73 fveq2 q = z w J q = J z w
74 df-ov z J w = J z w
75 73 74 eqtr4di q = z w J q = z J w
76 fveq2 q = z w K q = K z w
77 df-ov z K w = K z w
78 76 77 eqtr4di q = z w K q = z K w
79 75 78 eqeq12d q = z w J q = K q z J w = z K w
80 79 ralxp q S × S J q = K q z S w S z J w = z K w
81 72 80 sylibr φ q S × S J q = K q
82 6 5 homffn J Fn C × C
83 82 a1i φ J Fn C × C
84 xpss12 S C S C S × S C × C
85 17 17 84 syl2anc φ S × S C × C
86 fvreseq1 J Fn C × C K Fn S × S S × S C × C J S × S = K q S × S J q = K q
87 83 10 85 86 syl21anc φ J S × S = K q S × S J q = K q
88 81 87 mpbird φ J S × S = K
89 10 17 88 3jca φ K Fn S × S S C J S × S = K