Metamath Proof Explorer


Theorem incsequz

Description: An increasing sequence of positive integers takes on indefinitely large values. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion incsequz F:mFm<Fm+1AnFnA

Proof

Step Hyp Ref Expression
1 fveq2 p=1p=1
2 1 eleq2d p=1FnpFn1
3 2 rexbidv p=1nFnpnFn1
4 3 imbi2d p=1F:mFm<Fm+1nFnpF:mFm<Fm+1nFn1
5 fveq2 p=qp=q
6 5 eleq2d p=qFnpFnq
7 6 rexbidv p=qnFnpnFnq
8 7 imbi2d p=qF:mFm<Fm+1nFnpF:mFm<Fm+1nFnq
9 fveq2 p=q+1p=q+1
10 9 eleq2d p=q+1FnpFnq+1
11 10 rexbidv p=q+1nFnpnFnq+1
12 11 imbi2d p=q+1F:mFm<Fm+1nFnpF:mFm<Fm+1nFnq+1
13 fveq2 p=Ap=A
14 13 eleq2d p=AFnpFnA
15 14 rexbidv p=AnFnpnFnA
16 15 imbi2d p=AF:mFm<Fm+1nFnpF:mFm<Fm+1nFnA
17 1nn 1
18 17 ne0ii
19 ffvelcdm F:nFn
20 elnnuz FnFn1
21 19 20 sylib F:nFn1
22 21 ralrimiva F:nFn1
23 r19.2z nFn1nFn1
24 18 22 23 sylancr F:nFn1
25 24 adantr F:mFm<Fm+1nFn1
26 peano2nn nn+1
27 26 adantl qF:mFm<Fm+1nn+1
28 nnre qq
29 28 ad2antrr qF:mFm<Fm+1nq
30 19 nnred F:nFn
31 30 adantlr F:mFm<Fm+1nFn
32 31 adantll qF:mFm<Fm+1nFn
33 1red qF:mFm<Fm+1n1
34 29 32 33 leadd1d qF:mFm<Fm+1nqFnq+1Fn+1
35 fveq2 m=nFm=Fn
36 fvoveq1 m=nFm+1=Fn+1
37 35 36 breq12d m=nFm<Fm+1Fn<Fn+1
38 37 rspcv nmFm<Fm+1Fn<Fn+1
39 38 imdistani nmFm<Fm+1nFn<Fn+1
40 ffvelcdm F:n+1Fn+1
41 26 40 sylan2 F:nFn+1
42 nnltp1le FnFn+1Fn<Fn+1Fn+1Fn+1
43 19 41 42 syl2anc F:nFn<Fn+1Fn+1Fn+1
44 43 biimpa F:nFn<Fn+1Fn+1Fn+1
45 44 anasss F:nFn<Fn+1Fn+1Fn+1
46 39 45 sylan2 F:nmFm<Fm+1Fn+1Fn+1
47 46 anass1rs F:mFm<Fm+1nFn+1Fn+1
48 47 adantll qF:mFm<Fm+1nFn+1Fn+1
49 peano2re qq+1
50 28 49 syl qq+1
51 50 ad2antrr qF:nq+1
52 peano2nn FnFn+1
53 19 52 syl F:nFn+1
54 53 nnred F:nFn+1
55 54 adantll qF:nFn+1
56 40 nnred F:n+1Fn+1
57 26 56 sylan2 F:nFn+1
58 57 adantll qF:nFn+1
59 letr q+1Fn+1Fn+1q+1Fn+1Fn+1Fn+1q+1Fn+1
60 51 55 58 59 syl3anc qF:nq+1Fn+1Fn+1Fn+1q+1Fn+1
61 60 adantlrr qF:mFm<Fm+1nq+1Fn+1Fn+1Fn+1q+1Fn+1
62 48 61 mpan2d qF:mFm<Fm+1nq+1Fn+1q+1Fn+1
63 34 62 sylbid qF:mFm<Fm+1nqFnq+1Fn+1
64 nnz qq
65 19 nnzd F:nFn
66 eluz qFnFnqqFn
67 64 65 66 syl2an qF:nFnqqFn
68 67 adantrlr qF:mFm<Fm+1nFnqqFn
69 68 anassrs qF:mFm<Fm+1nFnqqFn
70 64 peano2zd qq+1
71 40 nnzd F:n+1Fn+1
72 26 71 sylan2 F:nFn+1
73 eluz q+1Fn+1Fn+1q+1q+1Fn+1
74 70 72 73 syl2an qF:nFn+1q+1q+1Fn+1
75 74 adantrlr qF:mFm<Fm+1nFn+1q+1q+1Fn+1
76 75 anassrs qF:mFm<Fm+1nFn+1q+1q+1Fn+1
77 63 69 76 3imtr4d qF:mFm<Fm+1nFnqFn+1q+1
78 fveq2 k=n+1Fk=Fn+1
79 78 eleq1d k=n+1Fkq+1Fn+1q+1
80 79 rspcev n+1Fn+1q+1kFkq+1
81 27 77 80 syl6an qF:mFm<Fm+1nFnqkFkq+1
82 81 rexlimdva qF:mFm<Fm+1nFnqkFkq+1
83 fveq2 k=nFk=Fn
84 83 eleq1d k=nFkq+1Fnq+1
85 84 cbvrexvw kFkq+1nFnq+1
86 82 85 imbitrdi qF:mFm<Fm+1nFnqnFnq+1
87 86 ex qF:mFm<Fm+1nFnqnFnq+1
88 87 a2d qF:mFm<Fm+1nFnqF:mFm<Fm+1nFnq+1
89 4 8 12 16 25 88 nnind AF:mFm<Fm+1nFnA
90 89 com12 F:mFm<Fm+1AnFnA
91 90 3impia F:mFm<Fm+1AnFnA