Description: A half-open interval ending at B is open in the closed interval from A to B . (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 15-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | iocopnst.1 | |
|
Assertion | iocopnst | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iocopnst.1 | |
|
2 | iooretop | |
|
3 | simp1 | |
|
4 | 3 | a1i | |
5 | simp2 | |
|
6 | 5 | a1i | |
7 | ltp1 | |
|
8 | 7 | adantr | |
9 | peano2re | |
|
10 | lelttr | |
|
11 | 10 | 3expa | |
12 | 11 | ancom1s | |
13 | 12 | ancomsd | |
14 | 9 13 | mpidan | |
15 | 8 14 | mpand | |
16 | 15 | impr | |
17 | 16 | 3adantr2 | |
18 | 17 | ex | |
19 | 18 | ad2antlr | |
20 | 4 6 19 | 3jcad | |
21 | rexr | |
|
22 | elico2 | |
|
23 | 21 22 | sylan2 | |
24 | 23 | biimpa | |
25 | lelttr | |
|
26 | ltle | |
|
27 | 26 | 3adant2 | |
28 | 25 27 | syld | |
29 | 28 | 3expa | |
30 | 29 | imp | |
31 | 30 | an4s | |
32 | 31 | 3adantr3 | |
33 | 32 | ex | |
34 | 33 | anasss | |
35 | 34 | 3adantr3 | |
36 | 35 | adantlr | |
37 | 24 36 | syldan | |
38 | simp3 | |
|
39 | 38 | a1i | |
40 | 4 37 39 | 3jcad | |
41 | 20 40 | jcad | |
42 | simpl1 | |
|
43 | simpl2 | |
|
44 | simpr3 | |
|
45 | 42 43 44 | 3jca | |
46 | 41 45 | impbid1 | |
47 | 24 | simp1d | |
48 | 47 | rexrd | |
49 | simplr | |
|
50 | elioc2 | |
|
51 | 48 49 50 | syl2anc | |
52 | elin | |
|
53 | 9 | rexrd | |
54 | 53 | ad2antlr | |
55 | elioo2 | |
|
56 | 48 54 55 | syl2anc | |
57 | elicc2 | |
|
58 | 57 | adantr | |
59 | 56 58 | anbi12d | |
60 | 52 59 | bitrid | |
61 | 46 51 60 | 3bitr4d | |
62 | 61 | eqrdv | |
63 | ineq1 | |
|
64 | 63 | rspceeqv | |
65 | 2 62 64 | sylancr | |
66 | retop | |
|
67 | ovex | |
|
68 | elrest | |
|
69 | 66 67 68 | mp2an | |
70 | 65 69 | sylibr | |
71 | iccssre | |
|
72 | 71 | adantr | |
73 | eqid | |
|
74 | 73 1 | resubmet | |
75 | 72 74 | syl | |
76 | 70 75 | eleqtrrd | |
77 | 76 | ex | |