Metamath Proof Explorer


Theorem iocopnst

Description: A half-open interval ending at B is open in the closed interval from A to B . (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 15-Dec-2013)

Ref Expression
Hypothesis iocopnst.1 J=MetOpenabsAB×AB
Assertion iocopnst ABCABCBJ

Proof

Step Hyp Ref Expression
1 iocopnst.1 J=MetOpenabsAB×AB
2 iooretop CB+1topGenran.
3 simp1 vC<vvBv
4 3 a1i ABCABvC<vvBv
5 simp2 vC<vvBC<v
6 5 a1i ABCABvC<vvBC<v
7 ltp1 BB<B+1
8 7 adantr BvB<B+1
9 peano2re BB+1
10 lelttr vBB+1vBB<B+1v<B+1
11 10 3expa vBB+1vBB<B+1v<B+1
12 11 ancom1s BvB+1vBB<B+1v<B+1
13 12 ancomsd BvB+1B<B+1vBv<B+1
14 9 13 mpidan BvB<B+1vBv<B+1
15 8 14 mpand BvvBv<B+1
16 15 impr BvvBv<B+1
17 16 3adantr2 BvC<vvBv<B+1
18 17 ex BvC<vvBv<B+1
19 18 ad2antlr ABCABvC<vvBv<B+1
20 4 6 19 3jcad ABCABvC<vvBvC<vv<B+1
21 rexr BB*
22 elico2 AB*CABCACC<B
23 21 22 sylan2 ABCABCACC<B
24 23 biimpa ABCABCACC<B
25 lelttr ACvACC<vA<v
26 ltle AvA<vAv
27 26 3adant2 ACvA<vAv
28 25 27 syld ACvACC<vAv
29 28 3expa ACvACC<vAv
30 29 imp ACvACC<vAv
31 30 an4s ACACvC<vAv
32 31 3adantr3 ACACvC<vvBAv
33 32 ex ACACvC<vvBAv
34 33 anasss ACACvC<vvBAv
35 34 3adantr3 ACACC<BvC<vvBAv
36 35 adantlr ABCACC<BvC<vvBAv
37 24 36 syldan ABCABvC<vvBAv
38 simp3 vC<vvBvB
39 38 a1i ABCABvC<vvBvB
40 4 37 39 3jcad ABCABvC<vvBvAvvB
41 20 40 jcad ABCABvC<vvBvC<vv<B+1vAvvB
42 simpl1 vC<vv<B+1vAvvBv
43 simpl2 vC<vv<B+1vAvvBC<v
44 simpr3 vC<vv<B+1vAvvBvB
45 42 43 44 3jca vC<vv<B+1vAvvBvC<vvB
46 41 45 impbid1 ABCABvC<vvBvC<vv<B+1vAvvB
47 24 simp1d ABCABC
48 47 rexrd ABCABC*
49 simplr ABCABB
50 elioc2 C*BvCBvC<vvB
51 48 49 50 syl2anc ABCABvCBvC<vvB
52 elin vCB+1ABvCB+1vAB
53 9 rexrd BB+1*
54 53 ad2antlr ABCABB+1*
55 elioo2 C*B+1*vCB+1vC<vv<B+1
56 48 54 55 syl2anc ABCABvCB+1vC<vv<B+1
57 elicc2 ABvABvAvvB
58 57 adantr ABCABvABvAvvB
59 56 58 anbi12d ABCABvCB+1vABvC<vv<B+1vAvvB
60 52 59 bitrid ABCABvCB+1ABvC<vv<B+1vAvvB
61 46 51 60 3bitr4d ABCABvCBvCB+1AB
62 61 eqrdv ABCABCB=CB+1AB
63 ineq1 v=CB+1vAB=CB+1AB
64 63 rspceeqv CB+1topGenran.CB=CB+1ABvtopGenran.CB=vAB
65 2 62 64 sylancr ABCABvtopGenran.CB=vAB
66 retop topGenran.Top
67 ovex ABV
68 elrest topGenran.TopABVCBtopGenran.𝑡ABvtopGenran.CB=vAB
69 66 67 68 mp2an CBtopGenran.𝑡ABvtopGenran.CB=vAB
70 65 69 sylibr ABCABCBtopGenran.𝑡AB
71 iccssre ABAB
72 71 adantr ABCABAB
73 eqid topGenran.=topGenran.
74 73 1 resubmet ABJ=topGenran.𝑡AB
75 72 74 syl ABCABJ=topGenran.𝑡AB
76 70 75 eleqtrrd ABCABCBJ
77 76 ex ABCABCBJ