Metamath Proof Explorer


Theorem ioorcl2

Description: An open interval with finite volume has real endpoints. (Contributed by Mario Carneiro, 26-Mar-2015)

Ref Expression
Assertion ioorcl2 ABvol*ABAB

Proof

Step Hyp Ref Expression
1 n0 ABzzAB
2 elioore zABz
3 2 adantr zABvol*ABz
4 peano2re vol*ABvol*AB+1
5 4 adantl zABvol*ABvol*AB+1
6 3 5 resubcld zABvol*ABzvol*AB+1
7 6 rexrd zABvol*ABzvol*AB+1*
8 eliooxr zABA*B*
9 8 adantr zABvol*ABA*B*
10 9 simpld zABvol*ABA*
11 3 rexrd zABvol*ABz*
12 ltp1 vol*ABvol*AB<vol*AB+1
13 12 adantl zABvol*ABvol*AB<vol*AB+1
14 0red zABvol*AB0
15 simpr zABvol*ABvol*AB
16 ioossre AB
17 ovolge0 AB0vol*AB
18 16 17 mp1i zABvol*AB0vol*AB
19 lep1 vol*ABvol*ABvol*AB+1
20 19 adantl zABvol*ABvol*ABvol*AB+1
21 14 15 5 18 20 letrd zABvol*AB0vol*AB+1
22 3 5 subge02d zABvol*AB0vol*AB+1zvol*AB+1z
23 21 22 mpbid zABvol*ABzvol*AB+1z
24 ovolioo zvol*AB+1zzvol*AB+1zvol*zvol*AB+1z=zzvol*AB+1
25 6 3 23 24 syl3anc zABvol*ABvol*zvol*AB+1z=zzvol*AB+1
26 3 recnd zABvol*ABz
27 5 recnd zABvol*ABvol*AB+1
28 26 27 nncand zABvol*ABzzvol*AB+1=vol*AB+1
29 25 28 eqtrd zABvol*ABvol*zvol*AB+1z=vol*AB+1
30 29 adantr zABvol*ABAzvol*AB+1vol*zvol*AB+1z=vol*AB+1
31 iooss1 A*Azvol*AB+1zvol*AB+1zAz
32 10 31 sylan zABvol*ABAzvol*AB+1zvol*AB+1zAz
33 9 simprd zABvol*ABB*
34 eliooord zABA<zz<B
35 34 adantr zABvol*ABA<zz<B
36 35 simprd zABvol*ABz<B
37 11 33 36 xrltled zABvol*ABzB
38 iooss2 B*zBAzAB
39 33 37 38 syl2anc zABvol*ABAzAB
40 39 adantr zABvol*ABAzvol*AB+1AzAB
41 32 40 sstrd zABvol*ABAzvol*AB+1zvol*AB+1zAB
42 ovolss zvol*AB+1zABABvol*zvol*AB+1zvol*AB
43 41 16 42 sylancl zABvol*ABAzvol*AB+1vol*zvol*AB+1zvol*AB
44 30 43 eqbrtrrd zABvol*ABAzvol*AB+1vol*AB+1vol*AB
45 44 ex zABvol*ABAzvol*AB+1vol*AB+1vol*AB
46 10 7 xrlenltd zABvol*ABAzvol*AB+1¬zvol*AB+1<A
47 5 15 lenltd zABvol*ABvol*AB+1vol*AB¬vol*AB<vol*AB+1
48 45 46 47 3imtr3d zABvol*AB¬zvol*AB+1<A¬vol*AB<vol*AB+1
49 13 48 mt4d zABvol*ABzvol*AB+1<A
50 35 simpld zABvol*ABA<z
51 xrre2 zvol*AB+1*A*z*zvol*AB+1<AA<zA
52 7 10 11 49 50 51 syl32anc zABvol*ABA
53 3 5 readdcld zABvol*ABz+vol*AB+1
54 53 rexrd zABvol*ABz+vol*AB+1*
55 3 5 addge01d zABvol*AB0vol*AB+1zz+vol*AB+1
56 21 55 mpbid zABvol*ABzz+vol*AB+1
57 ovolioo zz+vol*AB+1zz+vol*AB+1vol*zz+vol*AB+1=z+vol*AB+1-z
58 3 53 56 57 syl3anc zABvol*ABvol*zz+vol*AB+1=z+vol*AB+1-z
59 26 27 pncan2d zABvol*ABz+vol*AB+1-z=vol*AB+1
60 58 59 eqtrd zABvol*ABvol*zz+vol*AB+1=vol*AB+1
61 60 adantr zABvol*ABz+vol*AB+1Bvol*zz+vol*AB+1=vol*AB+1
62 iooss2 B*z+vol*AB+1Bzz+vol*AB+1zB
63 33 62 sylan zABvol*ABz+vol*AB+1Bzz+vol*AB+1zB
64 10 11 50 xrltled zABvol*ABAz
65 iooss1 A*AzzBAB
66 10 64 65 syl2anc zABvol*ABzBAB
67 66 adantr zABvol*ABz+vol*AB+1BzBAB
68 63 67 sstrd zABvol*ABz+vol*AB+1Bzz+vol*AB+1AB
69 ovolss zz+vol*AB+1ABABvol*zz+vol*AB+1vol*AB
70 68 16 69 sylancl zABvol*ABz+vol*AB+1Bvol*zz+vol*AB+1vol*AB
71 61 70 eqbrtrrd zABvol*ABz+vol*AB+1Bvol*AB+1vol*AB
72 71 ex zABvol*ABz+vol*AB+1Bvol*AB+1vol*AB
73 54 33 xrlenltd zABvol*ABz+vol*AB+1B¬B<z+vol*AB+1
74 72 73 47 3imtr3d zABvol*AB¬B<z+vol*AB+1¬vol*AB<vol*AB+1
75 13 74 mt4d zABvol*ABB<z+vol*AB+1
76 xrre2 z*B*z+vol*AB+1*z<BB<z+vol*AB+1B
77 11 33 54 36 75 76 syl32anc zABvol*ABB
78 52 77 jca zABvol*ABAB
79 78 ex zABvol*ABAB
80 79 exlimiv zzABvol*ABAB
81 1 80 sylbi ABvol*ABAB
82 81 imp ABvol*ABAB