Metamath Proof Explorer


Theorem ipblnfi

Description: A function F generated by varying the first argument of an inner product (with its second argument a fixed vector A ) is a bounded linear functional, i.e. a bounded linear operator from the vector space to CC . (Contributed by NM, 12-Jan-2008) (Revised by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses ipblnfi.1 X=BaseSetU
ipblnfi.7 P=𝑖OLDU
ipblnfi.9 UCPreHilOLD
ipblnfi.c C=+×abs
ipblnfi.l B=UBLnOpC
ipblnfi.f F=xXxPA
Assertion ipblnfi AXFB

Proof

Step Hyp Ref Expression
1 ipblnfi.1 X=BaseSetU
2 ipblnfi.7 P=𝑖OLDU
3 ipblnfi.9 UCPreHilOLD
4 ipblnfi.c C=+×abs
5 ipblnfi.l B=UBLnOpC
6 ipblnfi.f F=xXxPA
7 3 phnvi UNrmCVec
8 1 2 dipcl UNrmCVecxXAXxPA
9 7 8 mp3an1 xXAXxPA
10 9 ancoms AXxXxPA
11 10 6 fmptd AXF:X
12 eqid 𝑠OLDU=𝑠OLDU
13 1 12 nvscl UNrmCVecyzXy𝑠OLDUzX
14 7 13 mp3an1 yzXy𝑠OLDUzX
15 14 ad2ant2lr AXyzXwXy𝑠OLDUzX
16 simprr AXyzXwXwX
17 simpll AXyzXwXAX
18 eqid +vU=+vU
19 1 18 2 dipdir UCPreHilOLDy𝑠OLDUzXwXAXy𝑠OLDUz+vUwPA=y𝑠OLDUzPA+wPA
20 3 19 mpan y𝑠OLDUzXwXAXy𝑠OLDUz+vUwPA=y𝑠OLDUzPA+wPA
21 15 16 17 20 syl3anc AXyzXwXy𝑠OLDUz+vUwPA=y𝑠OLDUzPA+wPA
22 simplr AXyzXwXy
23 simprl AXyzXwXzX
24 1 18 12 2 3 ipassi yzXAXy𝑠OLDUzPA=yzPA
25 22 23 17 24 syl3anc AXyzXwXy𝑠OLDUzPA=yzPA
26 25 oveq1d AXyzXwXy𝑠OLDUzPA+wPA=yzPA+wPA
27 21 26 eqtrd AXyzXwXy𝑠OLDUz+vUwPA=yzPA+wPA
28 14 adantll AXyzXy𝑠OLDUzX
29 1 18 nvgcl UNrmCVecy𝑠OLDUzXwXy𝑠OLDUz+vUwX
30 7 29 mp3an1 y𝑠OLDUzXwXy𝑠OLDUz+vUwX
31 28 30 sylan AXyzXwXy𝑠OLDUz+vUwX
32 31 anasss AXyzXwXy𝑠OLDUz+vUwX
33 oveq1 x=y𝑠OLDUz+vUwxPA=y𝑠OLDUz+vUwPA
34 ovex y𝑠OLDUz+vUwPAV
35 33 6 34 fvmpt y𝑠OLDUz+vUwXFy𝑠OLDUz+vUw=y𝑠OLDUz+vUwPA
36 32 35 syl AXyzXwXFy𝑠OLDUz+vUw=y𝑠OLDUz+vUwPA
37 oveq1 x=zxPA=zPA
38 ovex zPAV
39 37 6 38 fvmpt zXFz=zPA
40 39 ad2antrl AXyzXwXFz=zPA
41 40 oveq2d AXyzXwXyFz=yzPA
42 oveq1 x=wxPA=wPA
43 ovex wPAV
44 42 6 43 fvmpt wXFw=wPA
45 44 ad2antll AXyzXwXFw=wPA
46 41 45 oveq12d AXyzXwXyFz+Fw=yzPA+wPA
47 27 36 46 3eqtr4d AXyzXwXFy𝑠OLDUz+vUw=yFz+Fw
48 47 ralrimivva AXyzXwXFy𝑠OLDUz+vUw=yFz+Fw
49 48 ralrimiva AXyzXwXFy𝑠OLDUz+vUw=yFz+Fw
50 4 cnnv CNrmCVec
51 4 cnnvba =BaseSetC
52 4 cnnvg +=+vC
53 4 cnnvs ×=𝑠OLDC
54 eqid ULnOpC=ULnOpC
55 1 51 18 52 12 53 54 islno UNrmCVecCNrmCVecFULnOpCF:XyzXwXFy𝑠OLDUz+vUw=yFz+Fw
56 7 50 55 mp2an FULnOpCF:XyzXwXFy𝑠OLDUz+vUw=yFz+Fw
57 11 49 56 sylanbrc AXFULnOpC
58 eqid normCVU=normCVU
59 1 58 nvcl UNrmCVecAXnormCVUA
60 7 59 mpan AXnormCVUA
61 1 58 2 3 sii zXAXzPAnormCVUznormCVUA
62 61 ancoms AXzXzPAnormCVUznormCVUA
63 39 adantl AXzXFz=zPA
64 63 fveq2d AXzXFz=zPA
65 60 recnd AXnormCVUA
66 1 58 nvcl UNrmCVeczXnormCVUz
67 7 66 mpan zXnormCVUz
68 67 recnd zXnormCVUz
69 mulcom normCVUAnormCVUznormCVUAnormCVUz=normCVUznormCVUA
70 65 68 69 syl2an AXzXnormCVUAnormCVUz=normCVUznormCVUA
71 62 64 70 3brtr4d AXzXFznormCVUAnormCVUz
72 71 ralrimiva AXzXFznormCVUAnormCVUz
73 4 cnnvnm abs=normCVC
74 1 58 73 54 5 7 50 blo3i FULnOpCnormCVUAzXFznormCVUAnormCVUzFB
75 57 60 72 74 syl3anc AXFB