Metamath Proof Explorer


Theorem ipcn

Description: The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses ipcn.f ,˙=ifW
ipcn.j J=TopOpenW
ipcn.k K=TopOpenfld
Assertion ipcn WCPreHil,˙J×tJCnK

Proof

Step Hyp Ref Expression
1 ipcn.f ,˙=ifW
2 ipcn.j J=TopOpenW
3 ipcn.k K=TopOpenfld
4 cphphl WCPreHilWPreHil
5 eqid BaseW=BaseW
6 eqid ScalarW=ScalarW
7 eqid BaseScalarW=BaseScalarW
8 5 1 6 7 phlipf WPreHil,˙:BaseW×BaseWBaseScalarW
9 4 8 syl WCPreHil,˙:BaseW×BaseWBaseScalarW
10 cphclm WCPreHilWCMod
11 6 7 clmsscn WCModBaseScalarW
12 10 11 syl WCPreHilBaseScalarW
13 9 12 fssd WCPreHil,˙:BaseW×BaseW
14 eqid 𝑖W=𝑖W
15 eqid distW=distW
16 eqid normW=normW
17 eqid r2normWx+1=r2normWx+1
18 eqid r2normWy+r2normWx+1=r2normWy+r2normWx+1
19 simpll WCPreHilxBaseWyBaseWr+WCPreHil
20 simplrl WCPreHilxBaseWyBaseWr+xBaseW
21 simplrr WCPreHilxBaseWyBaseWr+yBaseW
22 simpr WCPreHilxBaseWyBaseWr+r+
23 5 14 15 16 17 18 19 20 21 22 ipcnlem1 WCPreHilxBaseWyBaseWr+s+zBaseWwBaseWxdistWz<sydistWw<sx𝑖Wyz𝑖Ww<r
24 23 ralrimiva WCPreHilxBaseWyBaseWr+s+zBaseWwBaseWxdistWz<sydistWw<sx𝑖Wyz𝑖Ww<r
25 simplrl WCPreHilxBaseWyBaseWzBaseWwBaseWxBaseW
26 simprl WCPreHilxBaseWyBaseWzBaseWwBaseWzBaseW
27 25 26 ovresd WCPreHilxBaseWyBaseWzBaseWwBaseWxdistWBaseW×BaseWz=xdistWz
28 27 breq1d WCPreHilxBaseWyBaseWzBaseWwBaseWxdistWBaseW×BaseWz<sxdistWz<s
29 simplrr WCPreHilxBaseWyBaseWzBaseWwBaseWyBaseW
30 simprr WCPreHilxBaseWyBaseWzBaseWwBaseWwBaseW
31 29 30 ovresd WCPreHilxBaseWyBaseWzBaseWwBaseWydistWBaseW×BaseWw=ydistWw
32 31 breq1d WCPreHilxBaseWyBaseWzBaseWwBaseWydistWBaseW×BaseWw<sydistWw<s
33 28 32 anbi12d WCPreHilxBaseWyBaseWzBaseWwBaseWxdistWBaseW×BaseWz<sydistWBaseW×BaseWw<sxdistWz<sydistWw<s
34 13 ad2antrr WCPreHilxBaseWyBaseWzBaseWwBaseW,˙:BaseW×BaseW
35 34 25 29 fovcdmd WCPreHilxBaseWyBaseWzBaseWwBaseWx,˙y
36 34 26 30 fovcdmd WCPreHilxBaseWyBaseWzBaseWwBaseWz,˙w
37 eqid abs=abs
38 37 cnmetdval x,˙yz,˙wx,˙yabsz,˙w=x,˙yz,˙w
39 35 36 38 syl2anc WCPreHilxBaseWyBaseWzBaseWwBaseWx,˙yabsz,˙w=x,˙yz,˙w
40 5 14 1 ipfval xBaseWyBaseWx,˙y=x𝑖Wy
41 25 29 40 syl2anc WCPreHilxBaseWyBaseWzBaseWwBaseWx,˙y=x𝑖Wy
42 5 14 1 ipfval zBaseWwBaseWz,˙w=z𝑖Ww
43 42 adantl WCPreHilxBaseWyBaseWzBaseWwBaseWz,˙w=z𝑖Ww
44 41 43 oveq12d WCPreHilxBaseWyBaseWzBaseWwBaseWx,˙yz,˙w=x𝑖Wyz𝑖Ww
45 44 fveq2d WCPreHilxBaseWyBaseWzBaseWwBaseWx,˙yz,˙w=x𝑖Wyz𝑖Ww
46 39 45 eqtrd WCPreHilxBaseWyBaseWzBaseWwBaseWx,˙yabsz,˙w=x𝑖Wyz𝑖Ww
47 46 breq1d WCPreHilxBaseWyBaseWzBaseWwBaseWx,˙yabsz,˙w<rx𝑖Wyz𝑖Ww<r
48 33 47 imbi12d WCPreHilxBaseWyBaseWzBaseWwBaseWxdistWBaseW×BaseWz<sydistWBaseW×BaseWw<sx,˙yabsz,˙w<rxdistWz<sydistWw<sx𝑖Wyz𝑖Ww<r
49 48 2ralbidva WCPreHilxBaseWyBaseWzBaseWwBaseWxdistWBaseW×BaseWz<sydistWBaseW×BaseWw<sx,˙yabsz,˙w<rzBaseWwBaseWxdistWz<sydistWw<sx𝑖Wyz𝑖Ww<r
50 49 rexbidv WCPreHilxBaseWyBaseWs+zBaseWwBaseWxdistWBaseW×BaseWz<sydistWBaseW×BaseWw<sx,˙yabsz,˙w<rs+zBaseWwBaseWxdistWz<sydistWw<sx𝑖Wyz𝑖Ww<r
51 50 ralbidv WCPreHilxBaseWyBaseWr+s+zBaseWwBaseWxdistWBaseW×BaseWz<sydistWBaseW×BaseWw<sx,˙yabsz,˙w<rr+s+zBaseWwBaseWxdistWz<sydistWw<sx𝑖Wyz𝑖Ww<r
52 24 51 mpbird WCPreHilxBaseWyBaseWr+s+zBaseWwBaseWxdistWBaseW×BaseWz<sydistWBaseW×BaseWw<sx,˙yabsz,˙w<r
53 52 ralrimivva WCPreHilxBaseWyBaseWr+s+zBaseWwBaseWxdistWBaseW×BaseWz<sydistWBaseW×BaseWw<sx,˙yabsz,˙w<r
54 cphngp WCPreHilWNrmGrp
55 ngpms WNrmGrpWMetSp
56 54 55 syl WCPreHilWMetSp
57 msxms WMetSpW∞MetSp
58 56 57 syl WCPreHilW∞MetSp
59 eqid distWBaseW×BaseW=distWBaseW×BaseW
60 5 59 xmsxmet W∞MetSpdistWBaseW×BaseW∞MetBaseW
61 58 60 syl WCPreHildistWBaseW×BaseW∞MetBaseW
62 cnxmet abs∞Met
63 62 a1i WCPreHilabs∞Met
64 eqid MetOpendistWBaseW×BaseW=MetOpendistWBaseW×BaseW
65 3 cnfldtopn K=MetOpenabs
66 64 64 65 txmetcn distWBaseW×BaseW∞MetBaseWdistWBaseW×BaseW∞MetBaseWabs∞Met,˙MetOpendistWBaseW×BaseW×tMetOpendistWBaseW×BaseWCnK,˙:BaseW×BaseWxBaseWyBaseWr+s+zBaseWwBaseWxdistWBaseW×BaseWz<sydistWBaseW×BaseWw<sx,˙yabsz,˙w<r
67 61 61 63 66 syl3anc WCPreHil,˙MetOpendistWBaseW×BaseW×tMetOpendistWBaseW×BaseWCnK,˙:BaseW×BaseWxBaseWyBaseWr+s+zBaseWwBaseWxdistWBaseW×BaseWz<sydistWBaseW×BaseWw<sx,˙yabsz,˙w<r
68 13 53 67 mpbir2and WCPreHil,˙MetOpendistWBaseW×BaseW×tMetOpendistWBaseW×BaseWCnK
69 2 5 59 mstopn WMetSpJ=MetOpendistWBaseW×BaseW
70 56 69 syl WCPreHilJ=MetOpendistWBaseW×BaseW
71 70 70 oveq12d WCPreHilJ×tJ=MetOpendistWBaseW×BaseW×tMetOpendistWBaseW×BaseW
72 71 oveq1d WCPreHilJ×tJCnK=MetOpendistWBaseW×BaseW×tMetOpendistWBaseW×BaseWCnK
73 68 72 eleqtrrd WCPreHil,˙J×tJCnK