Description: A closure system determined by a function is a closure system and algebraic. (Contributed by Stefan O'Rear, 3-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | isacs1i | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 | |
|
2 | 1 | a1i | |
3 | pweq | |
|
4 | 3 | ineq1d | |
5 | 4 | imaeq2d | |
6 | 5 | unieqd | |
7 | id | |
|
8 | 6 7 | sseq12d | |
9 | inss1 | |
|
10 | elpw2g | |
|
11 | 9 10 | mpbiri | |
12 | 11 | ad2antrr | |
13 | imassrn | |
|
14 | frn | |
|
15 | 14 | adantl | |
16 | 13 15 | sstrid | |
17 | 16 | unissd | |
18 | unipw | |
|
19 | 17 18 | sseqtrdi | |
20 | 19 | adantr | |
21 | inss2 | |
|
22 | intss1 | |
|
23 | 21 22 | sstrid | |
24 | 23 | adantl | |
25 | 24 | sspwd | |
26 | 25 | ssrind | |
27 | imass2 | |
|
28 | 26 27 | syl | |
29 | 28 | unissd | |
30 | ssel2 | |
|
31 | pweq | |
|
32 | 31 | ineq1d | |
33 | 32 | imaeq2d | |
34 | 33 | unieqd | |
35 | id | |
|
36 | 34 35 | sseq12d | |
37 | 36 | elrab | |
38 | 37 | simprbi | |
39 | 30 38 | syl | |
40 | 39 | adantll | |
41 | 29 40 | sstrd | |
42 | 41 | ralrimiva | |
43 | ssint | |
|
44 | 42 43 | sylibr | |
45 | 20 44 | ssind | |
46 | 8 12 45 | elrabd | |
47 | 2 46 | ismred2 | |
48 | fssxp | |
|
49 | pwexg | |
|
50 | 49 49 | xpexd | |
51 | ssexg | |
|
52 | 48 50 51 | syl2anr | |
53 | simpr | |
|
54 | pweq | |
|
55 | 54 | ineq1d | |
56 | 55 | imaeq2d | |
57 | 56 | unieqd | |
58 | id | |
|
59 | 57 58 | sseq12d | |
60 | 59 | elrab3 | |
61 | 60 | rgen | |
62 | 53 61 | jctir | |
63 | feq1 | |
|
64 | imaeq1 | |
|
65 | 64 | unieqd | |
66 | 65 | sseq1d | |
67 | 66 | bibi2d | |
68 | 67 | ralbidv | |
69 | 63 68 | anbi12d | |
70 | 52 62 69 | spcedv | |
71 | isacs | |
|
72 | 47 70 71 | sylanbrc | |