| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscau3.2 |
|
| 2 |
|
iscau3.3 |
|
| 3 |
|
iscau3.4 |
|
| 4 |
|
iscau4.5 |
|
| 5 |
|
iscau4.6 |
|
| 6 |
1 2 3
|
iscau3 |
|
| 7 |
|
simpr |
|
| 8 |
7 1
|
eleqtrdi |
|
| 9 |
|
eluzelz |
|
| 10 |
|
uzid |
|
| 11 |
8 9 10
|
3syl |
|
| 12 |
|
fveq2 |
|
| 13 |
|
fveq2 |
|
| 14 |
13
|
oveq1d |
|
| 15 |
14
|
breq1d |
|
| 16 |
12 15
|
raleqbidv |
|
| 17 |
16
|
rspcv |
|
| 18 |
11 17
|
syl |
|
| 19 |
18
|
adantr |
|
| 20 |
|
fveq2 |
|
| 21 |
20
|
oveq2d |
|
| 22 |
21
|
breq1d |
|
| 23 |
22
|
cbvralvw |
|
| 24 |
|
simpr |
|
| 25 |
24
|
ralimi |
|
| 26 |
13
|
eleq1d |
|
| 27 |
26
|
rspcv |
|
| 28 |
11 25 27
|
syl2im |
|
| 29 |
28
|
imp |
|
| 30 |
|
r19.26 |
|
| 31 |
2
|
ad3antrrr |
|
| 32 |
|
simplr |
|
| 33 |
|
simprr |
|
| 34 |
|
xmetsym |
|
| 35 |
31 32 33 34
|
syl3anc |
|
| 36 |
35
|
breq1d |
|
| 37 |
36
|
biimpd |
|
| 38 |
37
|
expimpd |
|
| 39 |
38
|
ralimdv |
|
| 40 |
30 39
|
biimtrrid |
|
| 41 |
40
|
expd |
|
| 42 |
41
|
impancom |
|
| 43 |
29 42
|
mpd |
|
| 44 |
23 43
|
biimtrid |
|
| 45 |
19 44
|
syld |
|
| 46 |
45
|
imdistanda |
|
| 47 |
|
r19.26 |
|
| 48 |
|
r19.26 |
|
| 49 |
46 47 48
|
3imtr4g |
|
| 50 |
|
df-3an |
|
| 51 |
50
|
ralbii |
|
| 52 |
|
df-3an |
|
| 53 |
52
|
ralbii |
|
| 54 |
49 51 53
|
3imtr4g |
|
| 55 |
54
|
reximdva |
|
| 56 |
55
|
ralimdv |
|
| 57 |
56
|
anim2d |
|
| 58 |
6 57
|
sylbid |
|
| 59 |
|
uzssz |
|
| 60 |
1 59
|
eqsstri |
|
| 61 |
|
ssrexv |
|
| 62 |
60 61
|
ax-mp |
|
| 63 |
62
|
ralimi |
|
| 64 |
63
|
anim2i |
|
| 65 |
|
iscau2 |
|
| 66 |
64 65
|
imbitrrid |
|
| 67 |
2 66
|
syl |
|
| 68 |
58 67
|
impbid |
|
| 69 |
|
simpl |
|
| 70 |
1
|
uztrn2 |
|
| 71 |
69 70
|
jca |
|
| 72 |
4
|
adantrl |
|
| 73 |
72
|
eleq1d |
|
| 74 |
5
|
adantrr |
|
| 75 |
72 74
|
oveq12d |
|
| 76 |
75
|
breq1d |
|
| 77 |
73 76
|
3anbi23d |
|
| 78 |
71 77
|
sylan2 |
|
| 79 |
78
|
anassrs |
|
| 80 |
79
|
ralbidva |
|
| 81 |
80
|
rexbidva |
|
| 82 |
81
|
ralbidv |
|
| 83 |
82
|
anbi2d |
|
| 84 |
68 83
|
bitrd |
|