Metamath Proof Explorer


Theorem iscau4

Description: Express the property " F is a Cauchy sequence of metric D " using an arbitrary upper set of integers. (Contributed by NM, 19-Dec-2006) (Revised by Mario Carneiro, 23-Dec-2013)

Ref Expression
Hypotheses iscau3.2 Z=M
iscau3.3 φD∞MetX
iscau3.4 φM
iscau4.5 φkZFk=A
iscau4.6 φjZFj=B
Assertion iscau4 φFCauDFX𝑝𝑚x+jZkjkdomFAXADB<x

Proof

Step Hyp Ref Expression
1 iscau3.2 Z=M
2 iscau3.3 φD∞MetX
3 iscau3.4 φM
4 iscau4.5 φkZFk=A
5 iscau4.6 φjZFj=B
6 1 2 3 iscau3 φFCauDFX𝑝𝑚x+jZkjkdomFFkXmkFkDFm<x
7 simpr φjZjZ
8 7 1 eleqtrdi φjZjM
9 eluzelz jMj
10 uzid jjj
11 8 9 10 3syl φjZjj
12 fveq2 k=jk=j
13 fveq2 k=jFk=Fj
14 13 oveq1d k=jFkDFm=FjDFm
15 14 breq1d k=jFkDFm<xFjDFm<x
16 12 15 raleqbidv k=jmkFkDFm<xmjFjDFm<x
17 16 rspcv jjkjmkFkDFm<xmjFjDFm<x
18 11 17 syl φjZkjmkFkDFm<xmjFjDFm<x
19 18 adantr φjZkjkdomFFkXkjmkFkDFm<xmjFjDFm<x
20 fveq2 m=kFm=Fk
21 20 oveq2d m=kFjDFm=FjDFk
22 21 breq1d m=kFjDFm<xFjDFk<x
23 22 cbvralvw mjFjDFm<xkjFjDFk<x
24 simpr kdomFFkXFkX
25 24 ralimi kjkdomFFkXkjFkX
26 13 eleq1d k=jFkXFjX
27 26 rspcv jjkjFkXFjX
28 11 25 27 syl2im φjZkjkdomFFkXFjX
29 28 imp φjZkjkdomFFkXFjX
30 r19.26 kjkdomFFkXFjDFk<xkjkdomFFkXkjFjDFk<x
31 2 ad3antrrr φjZFjXkdomFFkXD∞MetX
32 simplr φjZFjXkdomFFkXFjX
33 simprr φjZFjXkdomFFkXFkX
34 xmetsym D∞MetXFjXFkXFjDFk=FkDFj
35 31 32 33 34 syl3anc φjZFjXkdomFFkXFjDFk=FkDFj
36 35 breq1d φjZFjXkdomFFkXFjDFk<xFkDFj<x
37 36 biimpd φjZFjXkdomFFkXFjDFk<xFkDFj<x
38 37 expimpd φjZFjXkdomFFkXFjDFk<xFkDFj<x
39 38 ralimdv φjZFjXkjkdomFFkXFjDFk<xkjFkDFj<x
40 30 39 biimtrrid φjZFjXkjkdomFFkXkjFjDFk<xkjFkDFj<x
41 40 expd φjZFjXkjkdomFFkXkjFjDFk<xkjFkDFj<x
42 41 impancom φjZkjkdomFFkXFjXkjFjDFk<xkjFkDFj<x
43 29 42 mpd φjZkjkdomFFkXkjFjDFk<xkjFkDFj<x
44 23 43 biimtrid φjZkjkdomFFkXmjFjDFm<xkjFkDFj<x
45 19 44 syld φjZkjkdomFFkXkjmkFkDFm<xkjFkDFj<x
46 45 imdistanda φjZkjkdomFFkXkjmkFkDFm<xkjkdomFFkXkjFkDFj<x
47 r19.26 kjkdomFFkXmkFkDFm<xkjkdomFFkXkjmkFkDFm<x
48 r19.26 kjkdomFFkXFkDFj<xkjkdomFFkXkjFkDFj<x
49 46 47 48 3imtr4g φjZkjkdomFFkXmkFkDFm<xkjkdomFFkXFkDFj<x
50 df-3an kdomFFkXmkFkDFm<xkdomFFkXmkFkDFm<x
51 50 ralbii kjkdomFFkXmkFkDFm<xkjkdomFFkXmkFkDFm<x
52 df-3an kdomFFkXFkDFj<xkdomFFkXFkDFj<x
53 52 ralbii kjkdomFFkXFkDFj<xkjkdomFFkXFkDFj<x
54 49 51 53 3imtr4g φjZkjkdomFFkXmkFkDFm<xkjkdomFFkXFkDFj<x
55 54 reximdva φjZkjkdomFFkXmkFkDFm<xjZkjkdomFFkXFkDFj<x
56 55 ralimdv φx+jZkjkdomFFkXmkFkDFm<xx+jZkjkdomFFkXFkDFj<x
57 56 anim2d φFX𝑝𝑚x+jZkjkdomFFkXmkFkDFm<xFX𝑝𝑚x+jZkjkdomFFkXFkDFj<x
58 6 57 sylbid φFCauDFX𝑝𝑚x+jZkjkdomFFkXFkDFj<x
59 uzssz M
60 1 59 eqsstri Z
61 ssrexv ZjZkjkdomFFkXFkDFj<xjkjkdomFFkXFkDFj<x
62 60 61 ax-mp jZkjkdomFFkXFkDFj<xjkjkdomFFkXFkDFj<x
63 62 ralimi x+jZkjkdomFFkXFkDFj<xx+jkjkdomFFkXFkDFj<x
64 63 anim2i FX𝑝𝑚x+jZkjkdomFFkXFkDFj<xFX𝑝𝑚x+jkjkdomFFkXFkDFj<x
65 iscau2 D∞MetXFCauDFX𝑝𝑚x+jkjkdomFFkXFkDFj<x
66 64 65 imbitrrid D∞MetXFX𝑝𝑚x+jZkjkdomFFkXFkDFj<xFCauD
67 2 66 syl φFX𝑝𝑚x+jZkjkdomFFkXFkDFj<xFCauD
68 58 67 impbid φFCauDFX𝑝𝑚x+jZkjkdomFFkXFkDFj<x
69 simpl jZkjjZ
70 1 uztrn2 jZkjkZ
71 69 70 jca jZkjjZkZ
72 4 adantrl φjZkZFk=A
73 72 eleq1d φjZkZFkXAX
74 5 adantrr φjZkZFj=B
75 72 74 oveq12d φjZkZFkDFj=ADB
76 75 breq1d φjZkZFkDFj<xADB<x
77 73 76 3anbi23d φjZkZkdomFFkXFkDFj<xkdomFAXADB<x
78 71 77 sylan2 φjZkjkdomFFkXFkDFj<xkdomFAXADB<x
79 78 anassrs φjZkjkdomFFkXFkDFj<xkdomFAXADB<x
80 79 ralbidva φjZkjkdomFFkXFkDFj<xkjkdomFAXADB<x
81 80 rexbidva φjZkjkdomFFkXFkDFj<xjZkjkdomFAXADB<x
82 81 ralbidv φx+jZkjkdomFFkXFkDFj<xx+jZkjkdomFAXADB<x
83 82 anbi2d φFX𝑝𝑚x+jZkjkdomFFkXFkDFj<xFX𝑝𝑚x+jZkjkdomFAXADB<x
84 68 83 bitrd φFCauDFX𝑝𝑚x+jZkjkdomFAXADB<x