Metamath Proof Explorer


Theorem isdrngdOLD

Description: Obsolete version of isdrngd as of 19-Feb-2025. (Contributed by NM, 2-Aug-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses isdrngdOLD.b φB=BaseR
isdrngdOLD.t φ·˙=R
isdrngdOLD.z φ0˙=0R
isdrngdOLD.u φ1˙=1R
isdrngdOLD.r φRRing
isdrngdOLD.n φxBx0˙yBy0˙x·˙y0˙
isdrngdOLD.o φ1˙0˙
isdrngdOLD.i φxBx0˙IB
isdrngdOLD.j φxBx0˙I0˙
isdrngdOLD.k φxBx0˙I·˙x=1˙
Assertion isdrngdOLD φRDivRing

Proof

Step Hyp Ref Expression
1 isdrngdOLD.b φB=BaseR
2 isdrngdOLD.t φ·˙=R
3 isdrngdOLD.z φ0˙=0R
4 isdrngdOLD.u φ1˙=1R
5 isdrngdOLD.r φRRing
6 isdrngdOLD.n φxBx0˙yBy0˙x·˙y0˙
7 isdrngdOLD.o φ1˙0˙
8 isdrngdOLD.i φxBx0˙IB
9 isdrngdOLD.j φxBx0˙I0˙
10 isdrngdOLD.k φxBx0˙I·˙x=1˙
11 difss B0˙B
12 11 1 sseqtrid φB0˙BaseR
13 eqid mulGrpR𝑠B0˙=mulGrpR𝑠B0˙
14 eqid mulGrpR=mulGrpR
15 eqid BaseR=BaseR
16 14 15 mgpbas BaseR=BasemulGrpR
17 13 16 ressbas2 B0˙BaseRB0˙=BasemulGrpR𝑠B0˙
18 12 17 syl φB0˙=BasemulGrpR𝑠B0˙
19 fvex BaseRV
20 1 19 eqeltrdi φBV
21 difexg BVB0˙V
22 eqid R=R
23 14 22 mgpplusg R=+mulGrpR
24 13 23 ressplusg B0˙VR=+mulGrpR𝑠B0˙
25 20 21 24 3syl φR=+mulGrpR𝑠B0˙
26 2 25 eqtrd φ·˙=+mulGrpR𝑠B0˙
27 eldifsn xB0˙xBx0˙
28 eldifsn yB0˙yBy0˙
29 15 22 ringcl RRingxBaseRyBaseRxRyBaseR
30 5 29 syl3an1 φxBaseRyBaseRxRyBaseR
31 30 3expib φxBaseRyBaseRxRyBaseR
32 1 eleq2d φxBxBaseR
33 1 eleq2d φyByBaseR
34 32 33 anbi12d φxByBxBaseRyBaseR
35 2 oveqd φx·˙y=xRy
36 35 1 eleq12d φx·˙yBxRyBaseR
37 31 34 36 3imtr4d φxByBx·˙yB
38 37 3impib φxByBx·˙yB
39 38 3adant2r φxBx0˙yBx·˙yB
40 39 3adant3r φxBx0˙yBy0˙x·˙yB
41 eldifsn x·˙yB0˙x·˙yBx·˙y0˙
42 40 6 41 sylanbrc φxBx0˙yBy0˙x·˙yB0˙
43 28 42 syl3an3b φxBx0˙yB0˙x·˙yB0˙
44 27 43 syl3an2b φxB0˙yB0˙x·˙yB0˙
45 15 22 ringass RRingxBaseRyBaseRzBaseRxRyRz=xRyRz
46 45 ex RRingxBaseRyBaseRzBaseRxRyRz=xRyRz
47 5 46 syl φxBaseRyBaseRzBaseRxRyRz=xRyRz
48 1 eleq2d φzBzBaseR
49 32 33 48 3anbi123d φxByBzBxBaseRyBaseRzBaseR
50 eqidd φz=z
51 2 35 50 oveq123d φx·˙y·˙z=xRyRz
52 eqidd φx=x
53 2 oveqd φy·˙z=yRz
54 2 52 53 oveq123d φx·˙y·˙z=xRyRz
55 51 54 eqeq12d φx·˙y·˙z=x·˙y·˙zxRyRz=xRyRz
56 47 49 55 3imtr4d φxByBzBx·˙y·˙z=x·˙y·˙z
57 eldifi xB0˙xB
58 eldifi yB0˙yB
59 eldifi zB0˙zB
60 57 58 59 3anim123i xB0˙yB0˙zB0˙xByBzB
61 56 60 impel φxB0˙yB0˙zB0˙x·˙y·˙z=x·˙y·˙z
62 eqid 1R=1R
63 15 62 ringidcl RRing1RBaseR
64 5 63 syl φ1RBaseR
65 64 4 1 3eltr4d φ1˙B
66 eldifsn 1˙B0˙1˙B1˙0˙
67 65 7 66 sylanbrc φ1˙B0˙
68 15 22 62 ringlidm RRingxBaseR1RRx=x
69 68 ex RRingxBaseR1RRx=x
70 5 69 syl φxBaseR1RRx=x
71 2 4 52 oveq123d φ1˙·˙x=1RRx
72 71 eqeq1d φ1˙·˙x=x1RRx=x
73 70 32 72 3imtr4d φxB1˙·˙x=x
74 73 imp φxB1˙·˙x=x
75 74 adantrr φxBx0˙1˙·˙x=x
76 27 75 sylan2b φxB0˙1˙·˙x=x
77 eldifsn IB0˙IBI0˙
78 8 9 77 sylanbrc φxBx0˙IB0˙
79 27 78 sylan2b φxB0˙IB0˙
80 27 10 sylan2b φxB0˙I·˙x=1˙
81 18 26 44 61 67 76 79 80 isgrpd φmulGrpR𝑠B0˙Grp
82 3 sneqd φ0˙=0R
83 1 82 difeq12d φB0˙=BaseR0R
84 83 oveq2d φmulGrpR𝑠B0˙=mulGrpR𝑠BaseR0R
85 84 eleq1d φmulGrpR𝑠B0˙GrpmulGrpR𝑠BaseR0RGrp
86 85 anbi2d φRRingmulGrpR𝑠B0˙GrpRRingmulGrpR𝑠BaseR0RGrp
87 5 81 86 mpbi2and φRRingmulGrpR𝑠BaseR0RGrp
88 eqid 0R=0R
89 eqid mulGrpR𝑠BaseR0R=mulGrpR𝑠BaseR0R
90 15 88 89 isdrng2 RDivRingRRingmulGrpR𝑠BaseR0RGrp
91 87 90 sylibr φRDivRing