Metamath Proof Explorer


Theorem islvol5

Description: The predicate "is a 3-dim lattice volume" in terms of atoms. (Contributed by NM, 1-Jul-2012)

Ref Expression
Hypotheses islvol5.b B=BaseK
islvol5.l ˙=K
islvol5.j ˙=joinK
islvol5.a A=AtomsK
islvol5.v V=LVolsK
Assertion islvol5 KHLXBXVpAqArAsApq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙s

Proof

Step Hyp Ref Expression
1 islvol5.b B=BaseK
2 islvol5.l ˙=K
3 islvol5.j ˙=joinK
4 islvol5.a A=AtomsK
5 islvol5.v V=LVolsK
6 eqid LPlanesK=LPlanesK
7 1 2 3 4 6 5 islvol3 KHLXBXVyLPlanesKsA¬s˙yX=y˙s
8 df-rex yLPlanesKsA¬s˙yX=y˙syyLPlanesKsA¬s˙yX=y˙s
9 r19.41v sAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙rsAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙r
10 df-3an pq¬r˙p˙qy=p˙q˙rpq¬r˙p˙qy=p˙q˙r
11 10 anbi2i sAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙rsAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙r
12 an13 sAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙ry=p˙q˙rpq¬r˙p˙qsAyB¬s˙yX=y˙s
13 11 12 bitri sAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙ry=p˙q˙rpq¬r˙p˙qsAyB¬s˙yX=y˙s
14 9 13 bitri sAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙ry=p˙q˙rpq¬r˙p˙qsAyB¬s˙yX=y˙s
15 14 exbii ysAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙ryy=p˙q˙rpq¬r˙p˙qsAyB¬s˙yX=y˙s
16 ovex p˙q˙rV
17 an12 pq¬r˙p˙qyB¬s˙yX=y˙syBpq¬r˙p˙q¬s˙yX=y˙s
18 eleq1 y=p˙q˙ryBp˙q˙rB
19 breq2 y=p˙q˙rs˙ys˙p˙q˙r
20 19 notbid y=p˙q˙r¬s˙y¬s˙p˙q˙r
21 oveq1 y=p˙q˙ry˙s=p˙q˙r˙s
22 21 eqeq2d y=p˙q˙rX=y˙sX=p˙q˙r˙s
23 20 22 anbi12d y=p˙q˙r¬s˙yX=y˙s¬s˙p˙q˙rX=p˙q˙r˙s
24 23 anbi2d y=p˙q˙rpq¬r˙p˙q¬s˙yX=y˙spq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙s
25 anass pq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙spq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙s
26 df-3an pq¬r˙p˙q¬s˙p˙q˙rpq¬r˙p˙q¬s˙p˙q˙r
27 26 bicomi pq¬r˙p˙q¬s˙p˙q˙rpq¬r˙p˙q¬s˙p˙q˙r
28 27 anbi1i pq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙spq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙s
29 25 28 bitr3i pq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙spq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙s
30 24 29 bitrdi y=p˙q˙rpq¬r˙p˙q¬s˙yX=y˙spq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙s
31 18 30 anbi12d y=p˙q˙ryBpq¬r˙p˙q¬s˙yX=y˙sp˙q˙rBpq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙s
32 17 31 bitrid y=p˙q˙rpq¬r˙p˙qyB¬s˙yX=y˙sp˙q˙rBpq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙s
33 32 rexbidv y=p˙q˙rsApq¬r˙p˙qyB¬s˙yX=y˙ssAp˙q˙rBpq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙s
34 r19.42v sApq¬r˙p˙qyB¬s˙yX=y˙spq¬r˙p˙qsAyB¬s˙yX=y˙s
35 r19.42v sAp˙q˙rBpq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙sp˙q˙rBsApq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙s
36 33 34 35 3bitr3g y=p˙q˙rpq¬r˙p˙qsAyB¬s˙yX=y˙sp˙q˙rBsApq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙s
37 16 36 ceqsexv yy=p˙q˙rpq¬r˙p˙qsAyB¬s˙yX=y˙sp˙q˙rBsApq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙s
38 15 37 bitri ysAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙rp˙q˙rBsApq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙s
39 hllat KHLKLat
40 39 ad3antrrr KHLXBpAqArAKLat
41 simplll KHLXBpAqArAKHL
42 simplrl KHLXBpAqArApA
43 simplrr KHLXBpAqArAqA
44 1 3 4 hlatjcl KHLpAqAp˙qB
45 41 42 43 44 syl3anc KHLXBpAqArAp˙qB
46 1 4 atbase rArB
47 46 adantl KHLXBpAqArArB
48 1 3 latjcl KLatp˙qBrBp˙q˙rB
49 40 45 47 48 syl3anc KHLXBpAqArAp˙q˙rB
50 49 biantrurd KHLXBpAqArAsApq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙sp˙q˙rBsApq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙s
51 38 50 bitr4id KHLXBpAqArAysAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙rsApq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙s
52 51 rexbidva KHLXBpAqArAysAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙rrAsApq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙s
53 52 2rexbidva KHLXBpAqArAysAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙rpAqArAsApq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙s
54 rexcom4 rAysAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙ryrAsAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙r
55 54 rexbii qArAysAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙rqAyrAsAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙r
56 rexcom4 qAyrAsAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙ryqArAsAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙r
57 55 56 bitri qArAysAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙ryqArAsAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙r
58 57 rexbii pAqArAysAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙rpAyqArAsAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙r
59 rexcom4 pAyqArAsAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙rypAqArAsAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙r
60 58 59 bitri pAqArAysAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙rypAqArAsAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙r
61 53 60 bitr3di KHLXBpAqArAsApq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙sypAqArAsAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙r
62 rexcom rAsAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙rsArAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙r
63 62 rexbii qArAsAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙rqAsArAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙r
64 rexcom qAsArAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙rsAqArAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙r
65 63 64 bitri qArAsAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙rsAqArAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙r
66 65 rexbii pAqArAsAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙rpAsAqArAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙r
67 rexcom pAsAqArAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙rsApAqArAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙r
68 66 67 bitri pAqArAsAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙rsApAqArAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙r
69 1 2 3 4 6 islpln2 KHLyLPlanesKyBpAqArApq¬r˙p˙qy=p˙q˙r
70 69 adantr KHLXByLPlanesKyBpAqArApq¬r˙p˙qy=p˙q˙r
71 70 anbi1d KHLXByLPlanesK¬s˙yX=y˙syBpAqArApq¬r˙p˙qy=p˙q˙r¬s˙yX=y˙s
72 r19.42v pAyB¬s˙yX=y˙sqArApq¬r˙p˙qy=p˙q˙ryB¬s˙yX=y˙spAqArApq¬r˙p˙qy=p˙q˙r
73 r19.42v rAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙ryB¬s˙yX=y˙srApq¬r˙p˙qy=p˙q˙r
74 73 rexbii qArAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙rqAyB¬s˙yX=y˙srApq¬r˙p˙qy=p˙q˙r
75 r19.42v qAyB¬s˙yX=y˙srApq¬r˙p˙qy=p˙q˙ryB¬s˙yX=y˙sqArApq¬r˙p˙qy=p˙q˙r
76 74 75 bitri qArAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙ryB¬s˙yX=y˙sqArApq¬r˙p˙qy=p˙q˙r
77 76 rexbii pAqArAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙rpAyB¬s˙yX=y˙sqArApq¬r˙p˙qy=p˙q˙r
78 an32 yBpAqArApq¬r˙p˙qy=p˙q˙r¬s˙yX=y˙syB¬s˙yX=y˙spAqArApq¬r˙p˙qy=p˙q˙r
79 72 77 78 3bitr4ri yBpAqArApq¬r˙p˙qy=p˙q˙r¬s˙yX=y˙spAqArAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙r
80 71 79 bitrdi KHLXByLPlanesK¬s˙yX=y˙spAqArAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙r
81 80 rexbidv KHLXBsAyLPlanesK¬s˙yX=y˙ssApAqArAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙r
82 68 81 bitr4id KHLXBpAqArAsAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙rsAyLPlanesK¬s˙yX=y˙s
83 r19.42v sAyLPlanesK¬s˙yX=y˙syLPlanesKsA¬s˙yX=y˙s
84 82 83 bitrdi KHLXBpAqArAsAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙ryLPlanesKsA¬s˙yX=y˙s
85 84 exbidv KHLXBypAqArAsAyB¬s˙yX=y˙spq¬r˙p˙qy=p˙q˙ryyLPlanesKsA¬s˙yX=y˙s
86 61 85 bitrd KHLXBpAqArAsApq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙syyLPlanesKsA¬s˙yX=y˙s
87 8 86 bitr4id KHLXByLPlanesKsA¬s˙yX=y˙spAqArAsApq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙s
88 7 87 bitrd KHLXBXVpAqArAsApq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙s