Step |
Hyp |
Ref |
Expression |
1 |
|
fnmrc |
|
2 |
|
fnfun |
|
3 |
1 2
|
ax-mp |
|
4 |
|
fvelima |
|
5 |
3 4
|
mpan |
|
6 |
|
elfvex |
|
7 |
|
eqid |
|
8 |
7
|
mrcf |
|
9 |
|
mresspw |
|
10 |
8 9
|
fssd |
|
11 |
7
|
mrcssid |
|
12 |
11
|
adantrr |
|
13 |
7
|
mrcss |
|
14 |
13
|
3expb |
|
15 |
14
|
ancom2s |
|
16 |
7
|
mrcidm |
|
17 |
16
|
adantrr |
|
18 |
12 15 17
|
3jca |
|
19 |
18
|
ex |
|
20 |
19
|
alrimivv |
|
21 |
6 10 20
|
3jca |
|
22 |
|
feq1 |
|
23 |
|
fveq1 |
|
24 |
23
|
sseq2d |
|
25 |
|
fveq1 |
|
26 |
25 23
|
sseq12d |
|
27 |
|
id |
|
28 |
27 23
|
fveq12d |
|
29 |
28 23
|
eqeq12d |
|
30 |
24 26 29
|
3anbi123d |
|
31 |
30
|
imbi2d |
|
32 |
31
|
2albidv |
|
33 |
22 32
|
3anbi23d |
|
34 |
21 33
|
syl5ibcom |
|
35 |
34
|
rexlimiv |
|
36 |
5 35
|
syl |
|
37 |
|
simp1 |
|
38 |
|
simp2 |
|
39 |
|
ssid |
|
40 |
|
3simpb |
|
41 |
40
|
imim2i |
|
42 |
41
|
2alimi |
|
43 |
|
sseq1 |
|
44 |
43
|
adantr |
|
45 |
|
sseq12 |
|
46 |
45
|
ancoms |
|
47 |
44 46
|
anbi12d |
|
48 |
|
id |
|
49 |
|
fveq2 |
|
50 |
48 49
|
sseq12d |
|
51 |
50
|
adantr |
|
52 |
|
2fveq3 |
|
53 |
52 49
|
eqeq12d |
|
54 |
53
|
adantr |
|
55 |
51 54
|
anbi12d |
|
56 |
47 55
|
imbi12d |
|
57 |
56
|
spc2gv |
|
58 |
57
|
el2v |
|
59 |
42 58
|
syl |
|
60 |
59
|
3ad2ant3 |
|
61 |
39 60
|
mpan2i |
|
62 |
61
|
imp |
|
63 |
62
|
simpld |
|
64 |
|
simp2 |
|
65 |
64
|
imim2i |
|
66 |
65
|
2alimi |
|
67 |
66
|
3ad2ant3 |
|
68 |
43
|
adantr |
|
69 |
|
sseq12 |
|
70 |
69
|
ancoms |
|
71 |
68 70
|
anbi12d |
|
72 |
|
fveq2 |
|
73 |
|
sseq12 |
|
74 |
72 49 73
|
syl2anr |
|
75 |
71 74
|
imbi12d |
|
76 |
75
|
spc2gv |
|
77 |
76
|
el2v |
|
78 |
67 77
|
syl |
|
79 |
78
|
3impib |
|
80 |
62
|
simprd |
|
81 |
37 38 63 79 80
|
ismrcd2 |
|
82 |
37 38 63 79 80
|
ismrcd1 |
|
83 |
|
fvssunirn |
|
84 |
1
|
fndmi |
|
85 |
83 84
|
sseqtrri |
|
86 |
|
funfvima2 |
|
87 |
3 85 86
|
mp2an |
|
88 |
82 87
|
syl |
|
89 |
81 88
|
eqeltrd |
|
90 |
36 89
|
impbii |
|