Metamath Proof Explorer


Theorem ismrc

Description: A function is a Moore closure operator iff it satisfies mrcssid , mrcss , and mrcidm . (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Assertion ismrc FmrClsMooreBBVF:𝒫B𝒫BxyxByxxFxFyFxFFx=Fx

Proof

Step Hyp Ref Expression
1 fnmrc mrClsFnranMoore
2 fnfun mrClsFnranMooreFunmrCls
3 1 2 ax-mp FunmrCls
4 fvelima FunmrClsFmrClsMooreBzMooreBmrClsz=F
5 3 4 mpan FmrClsMooreBzMooreBmrClsz=F
6 elfvex zMooreBBV
7 eqid mrClsz=mrClsz
8 7 mrcf zMooreBmrClsz:𝒫Bz
9 mresspw zMooreBz𝒫B
10 8 9 fssd zMooreBmrClsz:𝒫B𝒫B
11 7 mrcssid zMooreBxBxmrClszx
12 11 adantrr zMooreBxByxxmrClszx
13 7 mrcss zMooreByxxBmrClszymrClszx
14 13 3expb zMooreByxxBmrClszymrClszx
15 14 ancom2s zMooreBxByxmrClszymrClszx
16 7 mrcidm zMooreBxBmrClszmrClszx=mrClszx
17 16 adantrr zMooreBxByxmrClszmrClszx=mrClszx
18 12 15 17 3jca zMooreBxByxxmrClszxmrClszymrClszxmrClszmrClszx=mrClszx
19 18 ex zMooreBxByxxmrClszxmrClszymrClszxmrClszmrClszx=mrClszx
20 19 alrimivv zMooreBxyxByxxmrClszxmrClszymrClszxmrClszmrClszx=mrClszx
21 6 10 20 3jca zMooreBBVmrClsz:𝒫B𝒫BxyxByxxmrClszxmrClszymrClszxmrClszmrClszx=mrClszx
22 feq1 mrClsz=FmrClsz:𝒫B𝒫BF:𝒫B𝒫B
23 fveq1 mrClsz=FmrClszx=Fx
24 23 sseq2d mrClsz=FxmrClszxxFx
25 fveq1 mrClsz=FmrClszy=Fy
26 25 23 sseq12d mrClsz=FmrClszymrClszxFyFx
27 id mrClsz=FmrClsz=F
28 27 23 fveq12d mrClsz=FmrClszmrClszx=FFx
29 28 23 eqeq12d mrClsz=FmrClszmrClszx=mrClszxFFx=Fx
30 24 26 29 3anbi123d mrClsz=FxmrClszxmrClszymrClszxmrClszmrClszx=mrClszxxFxFyFxFFx=Fx
31 30 imbi2d mrClsz=FxByxxmrClszxmrClszymrClszxmrClszmrClszx=mrClszxxByxxFxFyFxFFx=Fx
32 31 2albidv mrClsz=FxyxByxxmrClszxmrClszymrClszxmrClszmrClszx=mrClszxxyxByxxFxFyFxFFx=Fx
33 22 32 3anbi23d mrClsz=FBVmrClsz:𝒫B𝒫BxyxByxxmrClszxmrClszymrClszxmrClszmrClszx=mrClszxBVF:𝒫B𝒫BxyxByxxFxFyFxFFx=Fx
34 21 33 syl5ibcom zMooreBmrClsz=FBVF:𝒫B𝒫BxyxByxxFxFyFxFFx=Fx
35 34 rexlimiv zMooreBmrClsz=FBVF:𝒫B𝒫BxyxByxxFxFyFxFFx=Fx
36 5 35 syl FmrClsMooreBBVF:𝒫B𝒫BxyxByxxFxFyFxFFx=Fx
37 simp1 BVF:𝒫B𝒫BxyxByxxFxFyFxFFx=FxBV
38 simp2 BVF:𝒫B𝒫BxyxByxxFxFyFxFFx=FxF:𝒫B𝒫B
39 ssid zz
40 3simpb xFxFyFxFFx=FxxFxFFx=Fx
41 40 imim2i xByxxFxFyFxFFx=FxxByxxFxFFx=Fx
42 41 2alimi xyxByxxFxFyFxFFx=FxxyxByxxFxFFx=Fx
43 sseq1 x=zxBzB
44 43 adantr x=zy=zxBzB
45 sseq12 y=zx=zyxzz
46 45 ancoms x=zy=zyxzz
47 44 46 anbi12d x=zy=zxByxzBzz
48 id x=zx=z
49 fveq2 x=zFx=Fz
50 48 49 sseq12d x=zxFxzFz
51 50 adantr x=zy=zxFxzFz
52 2fveq3 x=zFFx=FFz
53 52 49 eqeq12d x=zFFx=FxFFz=Fz
54 53 adantr x=zy=zFFx=FxFFz=Fz
55 51 54 anbi12d x=zy=zxFxFFx=FxzFzFFz=Fz
56 47 55 imbi12d x=zy=zxByxxFxFFx=FxzBzzzFzFFz=Fz
57 56 spc2gv zVzVxyxByxxFxFFx=FxzBzzzFzFFz=Fz
58 57 el2v xyxByxxFxFFx=FxzBzzzFzFFz=Fz
59 42 58 syl xyxByxxFxFyFxFFx=FxzBzzzFzFFz=Fz
60 59 3ad2ant3 BVF:𝒫B𝒫BxyxByxxFxFyFxFFx=FxzBzzzFzFFz=Fz
61 39 60 mpan2i BVF:𝒫B𝒫BxyxByxxFxFyFxFFx=FxzBzFzFFz=Fz
62 61 imp BVF:𝒫B𝒫BxyxByxxFxFyFxFFx=FxzBzFzFFz=Fz
63 62 simpld BVF:𝒫B𝒫BxyxByxxFxFyFxFFx=FxzBzFz
64 simp2 xFxFyFxFFx=FxFyFx
65 64 imim2i xByxxFxFyFxFFx=FxxByxFyFx
66 65 2alimi xyxByxxFxFyFxFFx=FxxyxByxFyFx
67 66 3ad2ant3 BVF:𝒫B𝒫BxyxByxxFxFyFxFFx=FxxyxByxFyFx
68 43 adantr x=zy=wxBzB
69 sseq12 y=wx=zyxwz
70 69 ancoms x=zy=wyxwz
71 68 70 anbi12d x=zy=wxByxzBwz
72 fveq2 y=wFy=Fw
73 sseq12 Fy=FwFx=FzFyFxFwFz
74 72 49 73 syl2anr x=zy=wFyFxFwFz
75 71 74 imbi12d x=zy=wxByxFyFxzBwzFwFz
76 75 spc2gv zVwVxyxByxFyFxzBwzFwFz
77 76 el2v xyxByxFyFxzBwzFwFz
78 67 77 syl BVF:𝒫B𝒫BxyxByxxFxFyFxFFx=FxzBwzFwFz
79 78 3impib BVF:𝒫B𝒫BxyxByxxFxFyFxFFx=FxzBwzFwFz
80 62 simprd BVF:𝒫B𝒫BxyxByxxFxFyFxFFx=FxzBFFz=Fz
81 37 38 63 79 80 ismrcd2 BVF:𝒫B𝒫BxyxByxxFxFyFxFFx=FxF=mrClsdomFI
82 37 38 63 79 80 ismrcd1 BVF:𝒫B𝒫BxyxByxxFxFyFxFFx=FxdomFIMooreB
83 fvssunirn MooreBranMoore
84 1 fndmi dommrCls=ranMoore
85 83 84 sseqtrri MooreBdommrCls
86 funfvima2 FunmrClsMooreBdommrClsdomFIMooreBmrClsdomFImrClsMooreB
87 3 85 86 mp2an domFIMooreBmrClsdomFImrClsMooreB
88 82 87 syl BVF:𝒫B𝒫BxyxByxxFxFyFxFFx=FxmrClsdomFImrClsMooreB
89 81 88 eqeltrd BVF:𝒫B𝒫BxyxByxxFxFyFxFFx=FxFmrClsMooreB
90 36 89 impbii FmrClsMooreBBVF:𝒫B𝒫BxyxByxxFxFyFxFFx=Fx