| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismtyres.2 |  | 
						
							| 2 |  | ismtyres.3 |  | 
						
							| 3 |  | ismtyres.4 |  | 
						
							| 4 |  | isismty |  | 
						
							| 5 | 4 | simprbda |  | 
						
							| 6 | 5 | adantrr |  | 
						
							| 7 |  | f1of1 |  | 
						
							| 8 | 6 7 | syl |  | 
						
							| 9 |  | simprr |  | 
						
							| 10 |  | f1ores |  | 
						
							| 11 | 8 9 10 | syl2anc |  | 
						
							| 12 | 4 | biimpa |  | 
						
							| 13 | 12 | adantrr |  | 
						
							| 14 |  | ssel |  | 
						
							| 15 |  | ssel |  | 
						
							| 16 | 14 15 | anim12d |  | 
						
							| 17 | 16 | imp |  | 
						
							| 18 |  | oveq1 |  | 
						
							| 19 |  | fveq2 |  | 
						
							| 20 | 19 | oveq1d |  | 
						
							| 21 | 18 20 | eqeq12d |  | 
						
							| 22 |  | oveq2 |  | 
						
							| 23 |  | fveq2 |  | 
						
							| 24 | 23 | oveq2d |  | 
						
							| 25 | 22 24 | eqeq12d |  | 
						
							| 26 | 21 25 | rspc2v |  | 
						
							| 27 | 17 26 | syl |  | 
						
							| 28 | 27 | imp |  | 
						
							| 29 | 28 | an32s |  | 
						
							| 30 | 29 | adantlrl |  | 
						
							| 31 | 30 | adantlll |  | 
						
							| 32 | 2 | oveqi |  | 
						
							| 33 |  | ovres |  | 
						
							| 34 | 32 33 | eqtrid |  | 
						
							| 35 | 34 | adantl |  | 
						
							| 36 |  | fvres |  | 
						
							| 37 | 36 | ad2antrl |  | 
						
							| 38 |  | fvres |  | 
						
							| 39 | 38 | ad2antll |  | 
						
							| 40 | 37 39 | oveq12d |  | 
						
							| 41 | 3 | oveqi |  | 
						
							| 42 |  | f1ofun |  | 
						
							| 43 | 42 | adantl |  | 
						
							| 44 |  | f1odm |  | 
						
							| 45 | 44 | sseq2d |  | 
						
							| 46 | 45 | biimparc |  | 
						
							| 47 |  | funfvima2 |  | 
						
							| 48 | 43 46 47 | syl2anc |  | 
						
							| 49 | 48 | imp |  | 
						
							| 50 | 49 1 | eleqtrrdi |  | 
						
							| 51 | 50 | adantrr |  | 
						
							| 52 |  | funfvima2 |  | 
						
							| 53 | 43 46 52 | syl2anc |  | 
						
							| 54 | 53 | imp |  | 
						
							| 55 | 54 1 | eleqtrrdi |  | 
						
							| 56 | 55 | adantrl |  | 
						
							| 57 | 51 56 | ovresd |  | 
						
							| 58 | 41 57 | eqtrid |  | 
						
							| 59 | 40 58 | eqtrd |  | 
						
							| 60 | 59 | adantlrr |  | 
						
							| 61 | 60 | adantlll |  | 
						
							| 62 | 31 35 61 | 3eqtr4d |  | 
						
							| 63 | 62 | ralrimivva |  | 
						
							| 64 | 63 | adantlrl |  | 
						
							| 65 | 13 64 | mpdan |  | 
						
							| 66 |  | xmetres2 |  | 
						
							| 67 | 2 66 | eqeltrid |  | 
						
							| 68 | 67 | ad2ant2rl |  | 
						
							| 69 |  | simplr |  | 
						
							| 70 |  | imassrn |  | 
						
							| 71 | 1 70 | eqsstri |  | 
						
							| 72 |  | f1ofo |  | 
						
							| 73 |  | forn |  | 
						
							| 74 | 6 72 73 | 3syl |  | 
						
							| 75 | 71 74 | sseqtrid |  | 
						
							| 76 |  | xmetres2 |  | 
						
							| 77 | 69 75 76 | syl2anc |  | 
						
							| 78 | 3 77 | eqeltrid |  | 
						
							| 79 | 1 | fveq2i |  | 
						
							| 80 | 78 79 | eleqtrdi |  | 
						
							| 81 |  | isismty |  | 
						
							| 82 | 68 80 81 | syl2anc |  | 
						
							| 83 | 11 65 82 | mpbir2and |  |