Metamath Proof Explorer


Theorem ismtyres

Description: A restriction of an isometry is an isometry. The condition A C_ X is not necessary but makes the proof easier. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 12-Sep-2015)

Ref Expression
Hypotheses ismtyres.2 B=FA
ismtyres.3 S=MA×A
ismtyres.4 T=NB×B
Assertion ismtyres M∞MetXN∞MetYFMIsmtyNAXFASIsmtyT

Proof

Step Hyp Ref Expression
1 ismtyres.2 B=FA
2 ismtyres.3 S=MA×A
3 ismtyres.4 T=NB×B
4 isismty M∞MetXN∞MetYFMIsmtyNF:X1-1 ontoYxXyXxMy=FxNFy
5 4 simprbda M∞MetXN∞MetYFMIsmtyNF:X1-1 ontoY
6 5 adantrr M∞MetXN∞MetYFMIsmtyNAXF:X1-1 ontoY
7 f1of1 F:X1-1 ontoYF:X1-1Y
8 6 7 syl M∞MetXN∞MetYFMIsmtyNAXF:X1-1Y
9 simprr M∞MetXN∞MetYFMIsmtyNAXAX
10 f1ores F:X1-1YAXFA:A1-1 ontoFA
11 8 9 10 syl2anc M∞MetXN∞MetYFMIsmtyNAXFA:A1-1 ontoFA
12 4 biimpa M∞MetXN∞MetYFMIsmtyNF:X1-1 ontoYxXyXxMy=FxNFy
13 12 adantrr M∞MetXN∞MetYFMIsmtyNAXF:X1-1 ontoYxXyXxMy=FxNFy
14 ssel AXuAuX
15 ssel AXvAvX
16 14 15 anim12d AXuAvAuXvX
17 16 imp AXuAvAuXvX
18 oveq1 x=uxMy=uMy
19 fveq2 x=uFx=Fu
20 19 oveq1d x=uFxNFy=FuNFy
21 18 20 eqeq12d x=uxMy=FxNFyuMy=FuNFy
22 oveq2 y=vuMy=uMv
23 fveq2 y=vFy=Fv
24 23 oveq2d y=vFuNFy=FuNFv
25 22 24 eqeq12d y=vuMy=FuNFyuMv=FuNFv
26 21 25 rspc2v uXvXxXyXxMy=FxNFyuMv=FuNFv
27 17 26 syl AXuAvAxXyXxMy=FxNFyuMv=FuNFv
28 27 imp AXuAvAxXyXxMy=FxNFyuMv=FuNFv
29 28 an32s AXxXyXxMy=FxNFyuAvAuMv=FuNFv
30 29 adantlrl AXF:X1-1 ontoYxXyXxMy=FxNFyuAvAuMv=FuNFv
31 30 adantlll M∞MetXN∞MetYAXF:X1-1 ontoYxXyXxMy=FxNFyuAvAuMv=FuNFv
32 2 oveqi uSv=uMA×Av
33 ovres uAvAuMA×Av=uMv
34 32 33 eqtrid uAvAuSv=uMv
35 34 adantl M∞MetXN∞MetYAXF:X1-1 ontoYxXyXxMy=FxNFyuAvAuSv=uMv
36 fvres uAFAu=Fu
37 36 ad2antrl AXF:X1-1 ontoYuAvAFAu=Fu
38 fvres vAFAv=Fv
39 38 ad2antll AXF:X1-1 ontoYuAvAFAv=Fv
40 37 39 oveq12d AXF:X1-1 ontoYuAvAFAuTFAv=FuTFv
41 3 oveqi FuTFv=FuNB×BFv
42 f1ofun F:X1-1 ontoYFunF
43 42 adantl AXF:X1-1 ontoYFunF
44 f1odm F:X1-1 ontoYdomF=X
45 44 sseq2d F:X1-1 ontoYAdomFAX
46 45 biimparc AXF:X1-1 ontoYAdomF
47 funfvima2 FunFAdomFuAFuFA
48 43 46 47 syl2anc AXF:X1-1 ontoYuAFuFA
49 48 imp AXF:X1-1 ontoYuAFuFA
50 49 1 eleqtrrdi AXF:X1-1 ontoYuAFuB
51 50 adantrr AXF:X1-1 ontoYuAvAFuB
52 funfvima2 FunFAdomFvAFvFA
53 43 46 52 syl2anc AXF:X1-1 ontoYvAFvFA
54 53 imp AXF:X1-1 ontoYvAFvFA
55 54 1 eleqtrrdi AXF:X1-1 ontoYvAFvB
56 55 adantrl AXF:X1-1 ontoYuAvAFvB
57 51 56 ovresd AXF:X1-1 ontoYuAvAFuNB×BFv=FuNFv
58 41 57 eqtrid AXF:X1-1 ontoYuAvAFuTFv=FuNFv
59 40 58 eqtrd AXF:X1-1 ontoYuAvAFAuTFAv=FuNFv
60 59 adantlrr AXF:X1-1 ontoYxXyXxMy=FxNFyuAvAFAuTFAv=FuNFv
61 60 adantlll M∞MetXN∞MetYAXF:X1-1 ontoYxXyXxMy=FxNFyuAvAFAuTFAv=FuNFv
62 31 35 61 3eqtr4d M∞MetXN∞MetYAXF:X1-1 ontoYxXyXxMy=FxNFyuAvAuSv=FAuTFAv
63 62 ralrimivva M∞MetXN∞MetYAXF:X1-1 ontoYxXyXxMy=FxNFyuAvAuSv=FAuTFAv
64 63 adantlrl M∞MetXN∞MetYFMIsmtyNAXF:X1-1 ontoYxXyXxMy=FxNFyuAvAuSv=FAuTFAv
65 13 64 mpdan M∞MetXN∞MetYFMIsmtyNAXuAvAuSv=FAuTFAv
66 xmetres2 M∞MetXAXMA×A∞MetA
67 2 66 eqeltrid M∞MetXAXS∞MetA
68 67 ad2ant2rl M∞MetXN∞MetYFMIsmtyNAXS∞MetA
69 simplr M∞MetXN∞MetYFMIsmtyNAXN∞MetY
70 imassrn FAranF
71 1 70 eqsstri BranF
72 f1ofo F:X1-1 ontoYF:XontoY
73 forn F:XontoYranF=Y
74 6 72 73 3syl M∞MetXN∞MetYFMIsmtyNAXranF=Y
75 71 74 sseqtrid M∞MetXN∞MetYFMIsmtyNAXBY
76 xmetres2 N∞MetYBYNB×B∞MetB
77 69 75 76 syl2anc M∞MetXN∞MetYFMIsmtyNAXNB×B∞MetB
78 3 77 eqeltrid M∞MetXN∞MetYFMIsmtyNAXT∞MetB
79 1 fveq2i ∞MetB=∞MetFA
80 78 79 eleqtrdi M∞MetXN∞MetYFMIsmtyNAXT∞MetFA
81 isismty S∞MetAT∞MetFAFASIsmtyTFA:A1-1 ontoFAuAvAuSv=FAuTFAv
82 68 80 81 syl2anc M∞MetXN∞MetYFMIsmtyNAXFASIsmtyTFA:A1-1 ontoFAuAvAuSv=FAuTFAv
83 11 65 82 mpbir2and M∞MetXN∞MetYFMIsmtyNAXFASIsmtyT