| Step |
Hyp |
Ref |
Expression |
| 1 |
|
istopclsd.b |
|
| 2 |
|
istopclsd.f |
|
| 3 |
|
istopclsd.e |
|
| 4 |
|
istopclsd.i |
|
| 5 |
|
istopclsd.z |
|
| 6 |
|
istopclsd.u |
|
| 7 |
|
istopclsd.j |
|
| 8 |
2
|
ffnd |
|
| 9 |
8
|
adantr |
|
| 10 |
|
difss |
|
| 11 |
|
elpw2g |
|
| 12 |
1 11
|
syl |
|
| 13 |
10 12
|
mpbiri |
|
| 14 |
13
|
adantr |
|
| 15 |
|
fnelfp |
|
| 16 |
9 14 15
|
syl2anc |
|
| 17 |
16
|
bicomd |
|
| 18 |
17
|
rabbidva |
|
| 19 |
7 18
|
eqtrid |
|
| 20 |
|
simp1 |
|
| 21 |
|
simp2 |
|
| 22 |
|
simp3 |
|
| 23 |
22 21
|
sstrd |
|
| 24 |
20 21 23 6
|
syl3anc |
|
| 25 |
|
ssequn2 |
|
| 26 |
25
|
biimpi |
|
| 27 |
26
|
3ad2ant3 |
|
| 28 |
27
|
fveq2d |
|
| 29 |
24 28
|
eqtr3d |
|
| 30 |
|
ssequn2 |
|
| 31 |
29 30
|
sylibr |
|
| 32 |
1 2 3 31 4
|
ismrcd1 |
|
| 33 |
|
0elpw |
|
| 34 |
|
fnelfp |
|
| 35 |
8 33 34
|
sylancl |
|
| 36 |
5 35
|
mpbird |
|
| 37 |
|
simp1 |
|
| 38 |
|
inss1 |
|
| 39 |
|
dmss |
|
| 40 |
38 39
|
ax-mp |
|
| 41 |
40 2
|
fssdm |
|
| 42 |
41
|
3ad2ant1 |
|
| 43 |
|
simp2 |
|
| 44 |
42 43
|
sseldd |
|
| 45 |
44
|
elpwid |
|
| 46 |
|
simp3 |
|
| 47 |
42 46
|
sseldd |
|
| 48 |
47
|
elpwid |
|
| 49 |
37 45 48 6
|
syl3anc |
|
| 50 |
8
|
3ad2ant1 |
|
| 51 |
|
fnelfp |
|
| 52 |
50 44 51
|
syl2anc |
|
| 53 |
43 52
|
mpbid |
|
| 54 |
|
fnelfp |
|
| 55 |
50 47 54
|
syl2anc |
|
| 56 |
46 55
|
mpbid |
|
| 57 |
53 56
|
uneq12d |
|
| 58 |
49 57
|
eqtrd |
|
| 59 |
45 48
|
unssd |
|
| 60 |
|
vex |
|
| 61 |
|
vex |
|
| 62 |
60 61
|
unex |
|
| 63 |
62
|
elpw |
|
| 64 |
59 63
|
sylibr |
|
| 65 |
|
fnelfp |
|
| 66 |
50 64 65
|
syl2anc |
|
| 67 |
58 66
|
mpbird |
|
| 68 |
|
eqid |
|
| 69 |
32 36 67 68
|
mretopd |
|
| 70 |
69
|
simpld |
|
| 71 |
19 70
|
eqeltrd |
|
| 72 |
|
topontop |
|
| 73 |
71 72
|
syl |
|
| 74 |
|
eqid |
|
| 75 |
74
|
mrccls |
|
| 76 |
73 75
|
syl |
|
| 77 |
69
|
simprd |
|
| 78 |
19
|
fveq2d |
|
| 79 |
77 78
|
eqtr4d |
|
| 80 |
79
|
fveq2d |
|
| 81 |
76 80
|
eqtr4d |
|
| 82 |
1 2 3 31 4
|
ismrcd2 |
|
| 83 |
81 82
|
eqtr4d |
|
| 84 |
71 83
|
jca |
|