Step |
Hyp |
Ref |
Expression |
1 |
|
istopclsd.b |
|
2 |
|
istopclsd.f |
|
3 |
|
istopclsd.e |
|
4 |
|
istopclsd.i |
|
5 |
|
istopclsd.z |
|
6 |
|
istopclsd.u |
|
7 |
|
istopclsd.j |
|
8 |
2
|
ffnd |
|
9 |
8
|
adantr |
|
10 |
|
difss |
|
11 |
|
elpw2g |
|
12 |
1 11
|
syl |
|
13 |
10 12
|
mpbiri |
|
14 |
13
|
adantr |
|
15 |
|
fnelfp |
|
16 |
9 14 15
|
syl2anc |
|
17 |
16
|
bicomd |
|
18 |
17
|
rabbidva |
|
19 |
7 18
|
eqtrid |
|
20 |
|
simp1 |
|
21 |
|
simp2 |
|
22 |
|
simp3 |
|
23 |
22 21
|
sstrd |
|
24 |
20 21 23 6
|
syl3anc |
|
25 |
|
ssequn2 |
|
26 |
25
|
biimpi |
|
27 |
26
|
3ad2ant3 |
|
28 |
27
|
fveq2d |
|
29 |
24 28
|
eqtr3d |
|
30 |
|
ssequn2 |
|
31 |
29 30
|
sylibr |
|
32 |
1 2 3 31 4
|
ismrcd1 |
|
33 |
|
0elpw |
|
34 |
|
fnelfp |
|
35 |
8 33 34
|
sylancl |
|
36 |
5 35
|
mpbird |
|
37 |
|
simp1 |
|
38 |
|
inss1 |
|
39 |
|
dmss |
|
40 |
38 39
|
ax-mp |
|
41 |
40 2
|
fssdm |
|
42 |
41
|
3ad2ant1 |
|
43 |
|
simp2 |
|
44 |
42 43
|
sseldd |
|
45 |
44
|
elpwid |
|
46 |
|
simp3 |
|
47 |
42 46
|
sseldd |
|
48 |
47
|
elpwid |
|
49 |
37 45 48 6
|
syl3anc |
|
50 |
8
|
3ad2ant1 |
|
51 |
|
fnelfp |
|
52 |
50 44 51
|
syl2anc |
|
53 |
43 52
|
mpbid |
|
54 |
|
fnelfp |
|
55 |
50 47 54
|
syl2anc |
|
56 |
46 55
|
mpbid |
|
57 |
53 56
|
uneq12d |
|
58 |
49 57
|
eqtrd |
|
59 |
45 48
|
unssd |
|
60 |
|
vex |
|
61 |
|
vex |
|
62 |
60 61
|
unex |
|
63 |
62
|
elpw |
|
64 |
59 63
|
sylibr |
|
65 |
|
fnelfp |
|
66 |
50 64 65
|
syl2anc |
|
67 |
58 66
|
mpbird |
|
68 |
|
eqid |
|
69 |
32 36 67 68
|
mretopd |
|
70 |
69
|
simpld |
|
71 |
19 70
|
eqeltrd |
|
72 |
|
topontop |
|
73 |
71 72
|
syl |
|
74 |
|
eqid |
|
75 |
74
|
mrccls |
|
76 |
73 75
|
syl |
|
77 |
69
|
simprd |
|
78 |
19
|
fveq2d |
|
79 |
77 78
|
eqtr4d |
|
80 |
79
|
fveq2d |
|
81 |
76 80
|
eqtr4d |
|
82 |
1 2 3 31 4
|
ismrcd2 |
|
83 |
81 82
|
eqtr4d |
|
84 |
71 83
|
jca |
|