Metamath Proof Explorer


Theorem istopclsd

Description: A closure function which satisfies sscls , clsidm , cls0 , and clsun defines a (unique) topology which it is the closure function on. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypotheses istopclsd.b φBV
istopclsd.f φF:𝒫B𝒫B
istopclsd.e φxBxFx
istopclsd.i φxBFFx=Fx
istopclsd.z φF=
istopclsd.u φxByBFxy=FxFy
istopclsd.j J=z𝒫B|FBz=Bz
Assertion istopclsd φJTopOnBclsJ=F

Proof

Step Hyp Ref Expression
1 istopclsd.b φBV
2 istopclsd.f φF:𝒫B𝒫B
3 istopclsd.e φxBxFx
4 istopclsd.i φxBFFx=Fx
5 istopclsd.z φF=
6 istopclsd.u φxByBFxy=FxFy
7 istopclsd.j J=z𝒫B|FBz=Bz
8 2 ffnd φFFn𝒫B
9 8 adantr φz𝒫BFFn𝒫B
10 difss BzB
11 elpw2g BVBz𝒫BBzB
12 1 11 syl φBz𝒫BBzB
13 10 12 mpbiri φBz𝒫B
14 13 adantr φz𝒫BBz𝒫B
15 fnelfp FFn𝒫BBz𝒫BBzdomFIFBz=Bz
16 9 14 15 syl2anc φz𝒫BBzdomFIFBz=Bz
17 16 bicomd φz𝒫BFBz=BzBzdomFI
18 17 rabbidva φz𝒫B|FBz=Bz=z𝒫B|BzdomFI
19 7 18 eqtrid φJ=z𝒫B|BzdomFI
20 simp1 φxByxφ
21 simp2 φxByxxB
22 simp3 φxByxyx
23 22 21 sstrd φxByxyB
24 20 21 23 6 syl3anc φxByxFxy=FxFy
25 ssequn2 yxxy=x
26 25 biimpi yxxy=x
27 26 3ad2ant3 φxByxxy=x
28 27 fveq2d φxByxFxy=Fx
29 24 28 eqtr3d φxByxFxFy=Fx
30 ssequn2 FyFxFxFy=Fx
31 29 30 sylibr φxByxFyFx
32 1 2 3 31 4 ismrcd1 φdomFIMooreB
33 0elpw 𝒫B
34 fnelfp FFn𝒫B𝒫BdomFIF=
35 8 33 34 sylancl φdomFIF=
36 5 35 mpbird φdomFI
37 simp1 φxdomFIydomFIφ
38 inss1 FIF
39 dmss FIFdomFIdomF
40 38 39 ax-mp domFIdomF
41 40 2 fssdm φdomFI𝒫B
42 41 3ad2ant1 φxdomFIydomFIdomFI𝒫B
43 simp2 φxdomFIydomFIxdomFI
44 42 43 sseldd φxdomFIydomFIx𝒫B
45 44 elpwid φxdomFIydomFIxB
46 simp3 φxdomFIydomFIydomFI
47 42 46 sseldd φxdomFIydomFIy𝒫B
48 47 elpwid φxdomFIydomFIyB
49 37 45 48 6 syl3anc φxdomFIydomFIFxy=FxFy
50 8 3ad2ant1 φxdomFIydomFIFFn𝒫B
51 fnelfp FFn𝒫Bx𝒫BxdomFIFx=x
52 50 44 51 syl2anc φxdomFIydomFIxdomFIFx=x
53 43 52 mpbid φxdomFIydomFIFx=x
54 fnelfp FFn𝒫By𝒫BydomFIFy=y
55 50 47 54 syl2anc φxdomFIydomFIydomFIFy=y
56 46 55 mpbid φxdomFIydomFIFy=y
57 53 56 uneq12d φxdomFIydomFIFxFy=xy
58 49 57 eqtrd φxdomFIydomFIFxy=xy
59 45 48 unssd φxdomFIydomFIxyB
60 vex xV
61 vex yV
62 60 61 unex xyV
63 62 elpw xy𝒫BxyB
64 59 63 sylibr φxdomFIydomFIxy𝒫B
65 fnelfp FFn𝒫Bxy𝒫BxydomFIFxy=xy
66 50 64 65 syl2anc φxdomFIydomFIxydomFIFxy=xy
67 58 66 mpbird φxdomFIydomFIxydomFI
68 eqid z𝒫B|BzdomFI=z𝒫B|BzdomFI
69 32 36 67 68 mretopd φz𝒫B|BzdomFITopOnBdomFI=Clsdz𝒫B|BzdomFI
70 69 simpld φz𝒫B|BzdomFITopOnB
71 19 70 eqeltrd φJTopOnB
72 topontop JTopOnBJTop
73 71 72 syl φJTop
74 eqid mrClsClsdJ=mrClsClsdJ
75 74 mrccls JTopclsJ=mrClsClsdJ
76 73 75 syl φclsJ=mrClsClsdJ
77 69 simprd φdomFI=Clsdz𝒫B|BzdomFI
78 19 fveq2d φClsdJ=Clsdz𝒫B|BzdomFI
79 77 78 eqtr4d φdomFI=ClsdJ
80 79 fveq2d φmrClsdomFI=mrClsClsdJ
81 76 80 eqtr4d φclsJ=mrClsdomFI
82 1 2 3 31 4 ismrcd2 φF=mrClsdomFI
83 81 82 eqtr4d φclsJ=F
84 71 83 jca φJTopOnBclsJ=F