Metamath Proof Explorer


Theorem itggt0cn

Description: itggt0 holds for continuous functions in the absence of ax-cc . (Contributed by Brendan Leahy, 16-Nov-2017)

Ref Expression
Hypotheses itggt0cn.1 φX<Y
itggt0cn.2 φxXYB𝐿1
itggt0cn.3 φxXYB+
itggt0cn.cn φxXYB:XYcn
Assertion itggt0cn φ0<XYBdx

Proof

Step Hyp Ref Expression
1 itggt0cn.1 φX<Y
2 itggt0cn.2 φxXYB𝐿1
3 itggt0cn.3 φxXYB+
4 itggt0cn.cn φxXYB:XYcn
5 3 rpred φxXYB
6 3 rpge0d φxXY0B
7 elrege0 B0+∞B0B
8 5 6 7 sylanbrc φxXYB0+∞
9 0e0icopnf 00+∞
10 9 a1i φ¬xXY00+∞
11 8 10 ifclda φifxXYB00+∞
12 11 adantr φxifxXYB00+∞
13 12 fmpttd φxifxXYB0:0+∞
14 3 rpgt0d φxXY0<B
15 elioore xXYx
16 15 adantl φxXYx
17 iftrue xXYifxXYB0=B
18 17 adantl φxXYifxXYB0=B
19 18 3 eqeltrd φxXYifxXYB0+
20 eqid xifxXYB0=xifxXYB0
21 20 fvmpt2 xifxXYB0+xifxXYB0x=ifxXYB0
22 16 19 21 syl2anc φxXYxifxXYB0x=ifxXYB0
23 22 18 eqtrd φxXYxifxXYB0x=B
24 14 23 breqtrrd φxXY0<xifxXYB0x
25 24 ralrimiva φxXY0<xifxXYB0x
26 nfcv _x0
27 nfcv _x<
28 nffvmpt1 _xxifxXYB0y
29 26 27 28 nfbr x0<xifxXYB0y
30 nfv y0<xifxXYB0x
31 fveq2 y=xxifxXYB0y=xifxXYB0x
32 31 breq2d y=x0<xifxXYB0y0<xifxXYB0x
33 29 30 32 cbvralw yXY0<xifxXYB0yxXY0<xifxXYB0x
34 25 33 sylibr φyXY0<xifxXYB0y
35 34 r19.21bi φyXY0<xifxXYB0y
36 ioossre XY
37 resmpt XYxifxXYB0XY=xXYifxXYB0
38 36 37 ax-mp xifxXYB0XY=xXYifxXYB0
39 17 mpteq2ia xXYifxXYB0=xXYB
40 38 39 eqtri xifxXYB0XY=xXYB
41 40 4 eqeltrid φxifxXYB0XY:XYcn
42 1 13 35 41 itg2gt0cn φ0<2xifxXYB0
43 5 2 6 itgposval φXYBdx=2xifxXYB0
44 42 43 breqtrrd φ0<XYBdx