Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
ZFC Set Theory - add the Axiom of Choice
Cardinal number theorems using Axiom of Choice
konigthlem
Next ⟩
konigth
Metamath Proof Explorer
Ascii
Unicode
Theorem
konigthlem
Description:
Lemma for
konigth
.
(Contributed by
Mario Carneiro
, 22-Feb-2013)
Ref
Expression
Hypotheses
konigth.1
⊢
A
∈
V
konigth.2
⊢
S
=
⋃
i
∈
A
M
i
konigth.3
⨉
⊢
P
=
⨉
i
∈
A
N
i
konigth.4
⊢
D
=
i
∈
A
⟼
a
∈
M
i
⟼
f
a
i
konigth.5
⊢
E
=
i
∈
A
⟼
e
i
Assertion
konigthlem
⊢
∀
i
∈
A
M
i
≺
N
i
→
S
≺
P
Proof
Step
Hyp
Ref
Expression
1
konigth.1
⊢
A
∈
V
2
konigth.2
⊢
S
=
⋃
i
∈
A
M
i
3
konigth.3
⨉
⊢
P
=
⨉
i
∈
A
N
i
4
konigth.4
⊢
D
=
i
∈
A
⟼
a
∈
M
i
⟼
f
a
i
5
konigth.5
⊢
E
=
i
∈
A
⟼
e
i
6
fvex
⊢
M
i
∈
V
7
fvex
⊢
f
a
i
∈
V
8
eqid
⊢
a
∈
M
i
⟼
f
a
i
=
a
∈
M
i
⟼
f
a
i
9
7
8
fnmpti
⊢
a
∈
M
i
⟼
f
a
i
Fn
M
i
10
6
mptex
⊢
a
∈
M
i
⟼
f
a
i
∈
V
11
4
fvmpt2
⊢
i
∈
A
∧
a
∈
M
i
⟼
f
a
i
∈
V
→
D
i
=
a
∈
M
i
⟼
f
a
i
12
10
11
mpan2
⊢
i
∈
A
→
D
i
=
a
∈
M
i
⟼
f
a
i
13
12
fneq1d
⊢
i
∈
A
→
D
i
Fn
M
i
↔
a
∈
M
i
⟼
f
a
i
Fn
M
i
14
9
13
mpbiri
⊢
i
∈
A
→
D
i
Fn
M
i
15
fnrndomg
⊢
M
i
∈
V
→
D
i
Fn
M
i
→
ran
D
i
≼
M
i
16
6
14
15
mpsyl
⊢
i
∈
A
→
ran
D
i
≼
M
i
17
domsdomtr
⊢
ran
D
i
≼
M
i
∧
M
i
≺
N
i
→
ran
D
i
≺
N
i
18
16
17
sylan
⊢
i
∈
A
∧
M
i
≺
N
i
→
ran
D
i
≺
N
i
19
sdomdif
⊢
ran
D
i
≺
N
i
→
N
i
∖
ran
D
i
≠
∅
20
18
19
syl
⊢
i
∈
A
∧
M
i
≺
N
i
→
N
i
∖
ran
D
i
≠
∅
21
20
ralimiaa
⊢
∀
i
∈
A
M
i
≺
N
i
→
∀
i
∈
A
N
i
∖
ran
D
i
≠
∅
22
fvex
⊢
N
i
∈
V
23
22
difexi
⊢
N
i
∖
ran
D
i
∈
V
24
1
23
ac6c5
⊢
∀
i
∈
A
N
i
∖
ran
D
i
≠
∅
→
∃
e
∀
i
∈
A
e
i
∈
N
i
∖
ran
D
i
25
equid
⊢
f
=
f
26
eldifi
⊢
e
i
∈
N
i
∖
ran
D
i
→
e
i
∈
N
i
27
fvex
⊢
e
i
∈
V
28
5
fvmpt2
⊢
i
∈
A
∧
e
i
∈
V
→
E
i
=
e
i
29
27
28
mpan2
⊢
i
∈
A
→
E
i
=
e
i
30
29
eleq1d
⊢
i
∈
A
→
E
i
∈
N
i
↔
e
i
∈
N
i
31
26
30
imbitrrid
⊢
i
∈
A
→
e
i
∈
N
i
∖
ran
D
i
→
E
i
∈
N
i
32
31
ralimia
⊢
∀
i
∈
A
e
i
∈
N
i
∖
ran
D
i
→
∀
i
∈
A
E
i
∈
N
i
33
27
5
fnmpti
⊢
E
Fn
A
34
32
33
jctil
⊢
∀
i
∈
A
e
i
∈
N
i
∖
ran
D
i
→
E
Fn
A
∧
∀
i
∈
A
E
i
∈
N
i
35
1
mptex
⊢
i
∈
A
⟼
e
i
∈
V
36
5
35
eqeltri
⊢
E
∈
V
37
36
elixp
⨉
⊢
E
∈
⨉
i
∈
A
N
i
↔
E
Fn
A
∧
∀
i
∈
A
E
i
∈
N
i
38
34
37
sylibr
⨉
⊢
∀
i
∈
A
e
i
∈
N
i
∖
ran
D
i
→
E
∈
⨉
i
∈
A
N
i
39
38
3
eleqtrrdi
⊢
∀
i
∈
A
e
i
∈
N
i
∖
ran
D
i
→
E
∈
P
40
foelrn
⊢
f
:
S
⟶
onto
P
∧
E
∈
P
→
∃
a
∈
S
E
=
f
a
41
40
expcom
⊢
E
∈
P
→
f
:
S
⟶
onto
P
→
∃
a
∈
S
E
=
f
a
42
2
eleq2i
⊢
a
∈
S
↔
a
∈
⋃
i
∈
A
M
i
43
eliun
⊢
a
∈
⋃
i
∈
A
M
i
↔
∃
i
∈
A
a
∈
M
i
44
42
43
bitri
⊢
a
∈
S
↔
∃
i
∈
A
a
∈
M
i
45
nfra1
⊢
Ⅎ
i
∀
i
∈
A
e
i
∈
N
i
∖
ran
D
i
46
nfv
⊢
Ⅎ
i
E
=
f
a
47
45
46
nfan
⊢
Ⅎ
i
∀
i
∈
A
e
i
∈
N
i
∖
ran
D
i
∧
E
=
f
a
48
nfv
⊢
Ⅎ
i
¬
f
=
f
49
29
ad2antrl
⊢
E
=
f
a
∧
i
∈
A
∧
a
∈
M
i
→
E
i
=
e
i
50
fveq1
⊢
E
=
f
a
→
E
i
=
f
a
i
51
12
fveq1d
⊢
i
∈
A
→
D
i
a
=
a
∈
M
i
⟼
f
a
i
a
52
8
fvmpt2
⊢
a
∈
M
i
∧
f
a
i
∈
V
→
a
∈
M
i
⟼
f
a
i
a
=
f
a
i
53
7
52
mpan2
⊢
a
∈
M
i
→
a
∈
M
i
⟼
f
a
i
a
=
f
a
i
54
51
53
sylan9eq
⊢
i
∈
A
∧
a
∈
M
i
→
D
i
a
=
f
a
i
55
54
eqcomd
⊢
i
∈
A
∧
a
∈
M
i
→
f
a
i
=
D
i
a
56
50
55
sylan9eq
⊢
E
=
f
a
∧
i
∈
A
∧
a
∈
M
i
→
E
i
=
D
i
a
57
49
56
eqtr3d
⊢
E
=
f
a
∧
i
∈
A
∧
a
∈
M
i
→
e
i
=
D
i
a
58
fnfvelrn
⊢
D
i
Fn
M
i
∧
a
∈
M
i
→
D
i
a
∈
ran
D
i
59
14
58
sylan
⊢
i
∈
A
∧
a
∈
M
i
→
D
i
a
∈
ran
D
i
60
59
adantl
⊢
E
=
f
a
∧
i
∈
A
∧
a
∈
M
i
→
D
i
a
∈
ran
D
i
61
57
60
eqeltrd
⊢
E
=
f
a
∧
i
∈
A
∧
a
∈
M
i
→
e
i
∈
ran
D
i
62
61
3adant1
⊢
∀
i
∈
A
e
i
∈
N
i
∖
ran
D
i
∧
E
=
f
a
∧
i
∈
A
∧
a
∈
M
i
→
e
i
∈
ran
D
i
63
simp1
⊢
∀
i
∈
A
e
i
∈
N
i
∖
ran
D
i
∧
E
=
f
a
∧
i
∈
A
∧
a
∈
M
i
→
∀
i
∈
A
e
i
∈
N
i
∖
ran
D
i
64
simp3l
⊢
∀
i
∈
A
e
i
∈
N
i
∖
ran
D
i
∧
E
=
f
a
∧
i
∈
A
∧
a
∈
M
i
→
i
∈
A
65
rsp
⊢
∀
i
∈
A
e
i
∈
N
i
∖
ran
D
i
→
i
∈
A
→
e
i
∈
N
i
∖
ran
D
i
66
eldifn
⊢
e
i
∈
N
i
∖
ran
D
i
→
¬
e
i
∈
ran
D
i
67
65
66
syl6
⊢
∀
i
∈
A
e
i
∈
N
i
∖
ran
D
i
→
i
∈
A
→
¬
e
i
∈
ran
D
i
68
63
64
67
sylc
⊢
∀
i
∈
A
e
i
∈
N
i
∖
ran
D
i
∧
E
=
f
a
∧
i
∈
A
∧
a
∈
M
i
→
¬
e
i
∈
ran
D
i
69
62
68
pm2.21dd
⊢
∀
i
∈
A
e
i
∈
N
i
∖
ran
D
i
∧
E
=
f
a
∧
i
∈
A
∧
a
∈
M
i
→
¬
f
=
f
70
69
3expia
⊢
∀
i
∈
A
e
i
∈
N
i
∖
ran
D
i
∧
E
=
f
a
→
i
∈
A
∧
a
∈
M
i
→
¬
f
=
f
71
70
expd
⊢
∀
i
∈
A
e
i
∈
N
i
∖
ran
D
i
∧
E
=
f
a
→
i
∈
A
→
a
∈
M
i
→
¬
f
=
f
72
47
48
71
rexlimd
⊢
∀
i
∈
A
e
i
∈
N
i
∖
ran
D
i
∧
E
=
f
a
→
∃
i
∈
A
a
∈
M
i
→
¬
f
=
f
73
44
72
biimtrid
⊢
∀
i
∈
A
e
i
∈
N
i
∖
ran
D
i
∧
E
=
f
a
→
a
∈
S
→
¬
f
=
f
74
73
ex
⊢
∀
i
∈
A
e
i
∈
N
i
∖
ran
D
i
→
E
=
f
a
→
a
∈
S
→
¬
f
=
f
75
74
com23
⊢
∀
i
∈
A
e
i
∈
N
i
∖
ran
D
i
→
a
∈
S
→
E
=
f
a
→
¬
f
=
f
76
75
rexlimdv
⊢
∀
i
∈
A
e
i
∈
N
i
∖
ran
D
i
→
∃
a
∈
S
E
=
f
a
→
¬
f
=
f
77
41
76
syl9r
⊢
∀
i
∈
A
e
i
∈
N
i
∖
ran
D
i
→
E
∈
P
→
f
:
S
⟶
onto
P
→
¬
f
=
f
78
39
77
mpd
⊢
∀
i
∈
A
e
i
∈
N
i
∖
ran
D
i
→
f
:
S
⟶
onto
P
→
¬
f
=
f
79
25
78
mt2i
⊢
∀
i
∈
A
e
i
∈
N
i
∖
ran
D
i
→
¬
f
:
S
⟶
onto
P
80
79
exlimiv
⊢
∃
e
∀
i
∈
A
e
i
∈
N
i
∖
ran
D
i
→
¬
f
:
S
⟶
onto
P
81
21
24
80
3syl
⊢
∀
i
∈
A
M
i
≺
N
i
→
¬
f
:
S
⟶
onto
P
82
81
nexdv
⊢
∀
i
∈
A
M
i
≺
N
i
→
¬
∃
f
f
:
S
⟶
onto
P
83
6
0dom
⊢
∅
≼
M
i
84
domsdomtr
⊢
∅
≼
M
i
∧
M
i
≺
N
i
→
∅
≺
N
i
85
83
84
mpan
⊢
M
i
≺
N
i
→
∅
≺
N
i
86
22
0sdom
⊢
∅
≺
N
i
↔
N
i
≠
∅
87
85
86
sylib
⊢
M
i
≺
N
i
→
N
i
≠
∅
88
87
ralimi
⊢
∀
i
∈
A
M
i
≺
N
i
→
∀
i
∈
A
N
i
≠
∅
89
3
neeq1i
⨉
⊢
P
≠
∅
↔
⨉
i
∈
A
N
i
≠
∅
90
22
rgenw
⊢
∀
i
∈
A
N
i
∈
V
91
ixpexg
⨉
⊢
∀
i
∈
A
N
i
∈
V
→
⨉
i
∈
A
N
i
∈
V
92
90
91
ax-mp
⨉
⊢
⨉
i
∈
A
N
i
∈
V
93
3
92
eqeltri
⊢
P
∈
V
94
93
0sdom
⊢
∅
≺
P
↔
P
≠
∅
95
1
22
ac9
⨉
⊢
∀
i
∈
A
N
i
≠
∅
↔
⨉
i
∈
A
N
i
≠
∅
96
89
94
95
3bitr4i
⊢
∅
≺
P
↔
∀
i
∈
A
N
i
≠
∅
97
88
96
sylibr
⊢
∀
i
∈
A
M
i
≺
N
i
→
∅
≺
P
98
1
6
iunex
⊢
⋃
i
∈
A
M
i
∈
V
99
2
98
eqeltri
⊢
S
∈
V
100
domtri
⊢
P
∈
V
∧
S
∈
V
→
P
≼
S
↔
¬
S
≺
P
101
93
99
100
mp2an
⊢
P
≼
S
↔
¬
S
≺
P
102
101
biimpri
⊢
¬
S
≺
P
→
P
≼
S
103
fodomr
⊢
∅
≺
P
∧
P
≼
S
→
∃
f
f
:
S
⟶
onto
P
104
97
102
103
syl2an
⊢
∀
i
∈
A
M
i
≺
N
i
∧
¬
S
≺
P
→
∃
f
f
:
S
⟶
onto
P
105
82
104
mtand
⊢
∀
i
∈
A
M
i
≺
N
i
→
¬
¬
S
≺
P
106
105
notnotrd
⊢
∀
i
∈
A
M
i
≺
N
i
→
S
≺
P