Metamath Proof Explorer


Theorem konigthlem

Description: Lemma for konigth . (Contributed by Mario Carneiro, 22-Feb-2013)

Ref Expression
Hypotheses konigth.1 AV
konigth.2 S=iAMi
konigth.3 P=iANi
konigth.4 D=iAaMifai
konigth.5 E=iAei
Assertion konigthlem iAMiNiSP

Proof

Step Hyp Ref Expression
1 konigth.1 AV
2 konigth.2 S=iAMi
3 konigth.3 P=iANi
4 konigth.4 D=iAaMifai
5 konigth.5 E=iAei
6 fvex MiV
7 fvex faiV
8 eqid aMifai=aMifai
9 7 8 fnmpti aMifaiFnMi
10 6 mptex aMifaiV
11 4 fvmpt2 iAaMifaiVDi=aMifai
12 10 11 mpan2 iADi=aMifai
13 12 fneq1d iADiFnMiaMifaiFnMi
14 9 13 mpbiri iADiFnMi
15 fnrndomg MiVDiFnMiranDiMi
16 6 14 15 mpsyl iAranDiMi
17 domsdomtr ranDiMiMiNiranDiNi
18 16 17 sylan iAMiNiranDiNi
19 sdomdif ranDiNiNiranDi
20 18 19 syl iAMiNiNiranDi
21 20 ralimiaa iAMiNiiANiranDi
22 fvex NiV
23 22 difexi NiranDiV
24 1 23 ac6c5 iANiranDieiAeiNiranDi
25 equid f=f
26 eldifi eiNiranDieiNi
27 fvex eiV
28 5 fvmpt2 iAeiVEi=ei
29 27 28 mpan2 iAEi=ei
30 29 eleq1d iAEiNieiNi
31 26 30 imbitrrid iAeiNiranDiEiNi
32 31 ralimia iAeiNiranDiiAEiNi
33 27 5 fnmpti EFnA
34 32 33 jctil iAeiNiranDiEFnAiAEiNi
35 1 mptex iAeiV
36 5 35 eqeltri EV
37 36 elixp EiANiEFnAiAEiNi
38 34 37 sylibr iAeiNiranDiEiANi
39 38 3 eleqtrrdi iAeiNiranDiEP
40 foelrn f:SontoPEPaSE=fa
41 40 expcom EPf:SontoPaSE=fa
42 2 eleq2i aSaiAMi
43 eliun aiAMiiAaMi
44 42 43 bitri aSiAaMi
45 nfra1 iiAeiNiranDi
46 nfv iE=fa
47 45 46 nfan iiAeiNiranDiE=fa
48 nfv i¬f=f
49 29 ad2antrl E=faiAaMiEi=ei
50 fveq1 E=faEi=fai
51 12 fveq1d iADia=aMifaia
52 8 fvmpt2 aMifaiVaMifaia=fai
53 7 52 mpan2 aMiaMifaia=fai
54 51 53 sylan9eq iAaMiDia=fai
55 54 eqcomd iAaMifai=Dia
56 50 55 sylan9eq E=faiAaMiEi=Dia
57 49 56 eqtr3d E=faiAaMiei=Dia
58 fnfvelrn DiFnMiaMiDiaranDi
59 14 58 sylan iAaMiDiaranDi
60 59 adantl E=faiAaMiDiaranDi
61 57 60 eqeltrd E=faiAaMieiranDi
62 61 3adant1 iAeiNiranDiE=faiAaMieiranDi
63 simp1 iAeiNiranDiE=faiAaMiiAeiNiranDi
64 simp3l iAeiNiranDiE=faiAaMiiA
65 rsp iAeiNiranDiiAeiNiranDi
66 eldifn eiNiranDi¬eiranDi
67 65 66 syl6 iAeiNiranDiiA¬eiranDi
68 63 64 67 sylc iAeiNiranDiE=faiAaMi¬eiranDi
69 62 68 pm2.21dd iAeiNiranDiE=faiAaMi¬f=f
70 69 3expia iAeiNiranDiE=faiAaMi¬f=f
71 70 expd iAeiNiranDiE=faiAaMi¬f=f
72 47 48 71 rexlimd iAeiNiranDiE=faiAaMi¬f=f
73 44 72 biimtrid iAeiNiranDiE=faaS¬f=f
74 73 ex iAeiNiranDiE=faaS¬f=f
75 74 com23 iAeiNiranDiaSE=fa¬f=f
76 75 rexlimdv iAeiNiranDiaSE=fa¬f=f
77 41 76 syl9r iAeiNiranDiEPf:SontoP¬f=f
78 39 77 mpd iAeiNiranDif:SontoP¬f=f
79 25 78 mt2i iAeiNiranDi¬f:SontoP
80 79 exlimiv eiAeiNiranDi¬f:SontoP
81 21 24 80 3syl iAMiNi¬f:SontoP
82 81 nexdv iAMiNi¬ff:SontoP
83 6 0dom Mi
84 domsdomtr MiMiNiNi
85 83 84 mpan MiNiNi
86 22 0sdom NiNi
87 85 86 sylib MiNiNi
88 87 ralimi iAMiNiiANi
89 3 neeq1i PiANi
90 22 rgenw iANiV
91 ixpexg iANiViANiV
92 90 91 ax-mp iANiV
93 3 92 eqeltri PV
94 93 0sdom PP
95 1 22 ac9 iANiiANi
96 89 94 95 3bitr4i PiANi
97 88 96 sylibr iAMiNiP
98 1 6 iunex iAMiV
99 2 98 eqeltri SV
100 domtri PVSVPS¬SP
101 93 99 100 mp2an PS¬SP
102 101 biimpri ¬SPPS
103 fodomr PPSff:SontoP
104 97 102 103 syl2an iAMiNi¬SPff:SontoP
105 82 104 mtand iAMiNi¬¬SP
106 105 notnotrd iAMiNiSP