Metamath Proof Explorer


Theorem lcfl9a

Description: Property implying that a functional has a closed kernel. (Contributed by NM, 16-Feb-2015)

Ref Expression
Hypotheses lcfl9a.h H=LHypK
lcfl9a.o ˙=ocHKW
lcfl9a.u U=DVecHKW
lcfl9a.v V=BaseU
lcfl9a.f F=LFnlU
lcfl9a.l L=LKerU
lcfl9a.k φKHLWH
lcfl9a.g φGF
lcfl9a.x φXV
lcfl9a.s φ˙XLG
Assertion lcfl9a φ˙˙LG=LG

Proof

Step Hyp Ref Expression
1 lcfl9a.h H=LHypK
2 lcfl9a.o ˙=ocHKW
3 lcfl9a.u U=DVecHKW
4 lcfl9a.v V=BaseU
5 lcfl9a.f F=LFnlU
6 lcfl9a.l L=LKerU
7 lcfl9a.k φKHLWH
8 lcfl9a.g φGF
9 lcfl9a.x φXV
10 lcfl9a.s φ˙XLG
11 1 3 2 4 7 dochoc1 φ˙˙V=V
12 11 adantr φX=0U˙˙V=V
13 1 3 7 dvhlmod φULMod
14 4 5 6 13 8 lkrssv φLGV
15 14 adantr φX=0ULGV
16 sneq X=0UX=0U
17 16 fveq2d X=0U˙X=˙0U
18 eqid 0U=0U
19 1 3 2 4 18 doch0 KHLWH˙0U=V
20 7 19 syl φ˙0U=V
21 17 20 sylan9eqr φX=0U˙X=V
22 10 adantr φX=0U˙XLG
23 21 22 eqsstrrd φX=0UVLG
24 15 23 eqssd φX=0ULG=V
25 24 fveq2d φX=0U˙LG=˙V
26 25 fveq2d φX=0U˙˙LG=˙˙V
27 12 26 24 3eqtr4d φX=0U˙˙LG=LG
28 11 adantr φLG=V˙˙V=V
29 simpr φLG=VLG=V
30 29 fveq2d φLG=V˙LG=˙V
31 30 fveq2d φLG=V˙˙LG=˙˙V
32 28 31 29 3eqtr4d φLG=V˙˙LG=LG
33 9 snssd φXV
34 eqid DIsoHKW=DIsoHKW
35 1 34 3 4 2 dochcl KHLWHXV˙XranDIsoHKW
36 7 33 35 syl2anc φ˙XranDIsoHKW
37 1 34 2 dochoc KHLWH˙XranDIsoHKW˙˙˙X=˙X
38 7 36 37 syl2anc φ˙˙˙X=˙X
39 38 adantr φX0ULGV˙˙˙X=˙X
40 10 adantr φX0ULGV˙XLG
41 eqid LSHypU=LSHypU
42 1 3 7 dvhlvec φULVec
43 42 adantr φX0ULGVULVec
44 7 adantr φX0ULGVKHLWH
45 9 adantr φX0ULGVXV
46 simprl φX0ULGVX0U
47 eldifsn XV0UXVX0U
48 45 46 47 sylanbrc φX0ULGVXV0U
49 1 2 3 4 18 41 44 48 dochsnshp φX0ULGV˙XLSHypU
50 simprr φX0ULGVLGV
51 4 41 5 6 42 8 lkrshp4 φLGVLGLSHypU
52 51 adantr φX0ULGVLGVLGLSHypU
53 50 52 mpbid φX0ULGVLGLSHypU
54 41 43 49 53 lshpcmp φX0ULGV˙XLG˙X=LG
55 40 54 mpbid φX0ULGV˙X=LG
56 55 fveq2d φX0ULGV˙˙X=˙LG
57 56 fveq2d φX0ULGV˙˙˙X=˙˙LG
58 39 57 55 3eqtr3d φX0ULGV˙˙LG=LG
59 27 32 58 pm2.61da2ne φ˙˙LG=LG