| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lcfrlem1.v |  | 
						
							| 2 |  | lcfrlem1.s |  | 
						
							| 3 |  | lcfrlem1.q |  | 
						
							| 4 |  | lcfrlem1.z |  | 
						
							| 5 |  | lcfrlem1.i |  | 
						
							| 6 |  | lcfrlem1.f |  | 
						
							| 7 |  | lcfrlem1.d |  | 
						
							| 8 |  | lcfrlem1.t |  | 
						
							| 9 |  | lcfrlem1.m |  | 
						
							| 10 |  | lcfrlem1.u |  | 
						
							| 11 |  | lcfrlem1.e |  | 
						
							| 12 |  | lcfrlem1.g |  | 
						
							| 13 |  | lcfrlem1.x |  | 
						
							| 14 |  | lcfrlem1.n |  | 
						
							| 15 |  | lcfrlem1.h |  | 
						
							| 16 | 15 | fveq1i |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 |  | lveclmod |  | 
						
							| 19 | 10 18 | syl |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 | 2 | lvecdrng |  | 
						
							| 22 | 10 21 | syl |  | 
						
							| 23 | 2 20 1 6 | lflcl |  | 
						
							| 24 | 10 12 13 23 | syl3anc |  | 
						
							| 25 | 20 4 5 | drnginvrcl |  | 
						
							| 26 | 22 24 14 25 | syl3anc |  | 
						
							| 27 | 2 20 1 6 | lflcl |  | 
						
							| 28 | 10 11 13 27 | syl3anc |  | 
						
							| 29 | 2 20 3 | lmodmcl |  | 
						
							| 30 | 19 26 28 29 | syl3anc |  | 
						
							| 31 | 6 2 20 7 8 19 30 12 | ldualvscl |  | 
						
							| 32 | 1 2 17 6 7 9 19 11 31 13 | ldualvsubval |  | 
						
							| 33 | 6 1 2 20 3 7 8 10 30 12 13 | ldualvsval |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 | 20 4 3 34 5 | drnginvrr |  | 
						
							| 36 | 22 24 14 35 | syl3anc |  | 
						
							| 37 | 36 | oveq1d |  | 
						
							| 38 | 2 | lmodring |  | 
						
							| 39 | 19 38 | syl |  | 
						
							| 40 | 20 3 | ringass |  | 
						
							| 41 | 39 24 26 28 40 | syl13anc |  | 
						
							| 42 | 20 3 34 | ringlidm |  | 
						
							| 43 | 39 28 42 | syl2anc |  | 
						
							| 44 | 37 41 43 | 3eqtr3d |  | 
						
							| 45 | 33 44 | eqtrd |  | 
						
							| 46 | 45 | oveq2d |  | 
						
							| 47 | 2 | lmodfgrp |  | 
						
							| 48 | 19 47 | syl |  | 
						
							| 49 | 20 4 17 | grpsubid |  | 
						
							| 50 | 48 28 49 | syl2anc |  | 
						
							| 51 | 32 46 50 | 3eqtrd |  | 
						
							| 52 | 16 51 | eqtrid |  |