Metamath Proof Explorer


Theorem lcfrlem1

Description: Lemma for lcfr . Note that X is z in Mario's notes. (Contributed by NM, 27-Feb-2015)

Ref Expression
Hypotheses lcfrlem1.v V=BaseU
lcfrlem1.s S=ScalarU
lcfrlem1.q ×˙=S
lcfrlem1.z 0˙=0S
lcfrlem1.i I=invrS
lcfrlem1.f F=LFnlU
lcfrlem1.d D=LDualU
lcfrlem1.t ·˙=D
lcfrlem1.m -˙=-D
lcfrlem1.u φULVec
lcfrlem1.e φEF
lcfrlem1.g φGF
lcfrlem1.x φXV
lcfrlem1.n φGX0˙
lcfrlem1.h H=E-˙IGX×˙EX·˙G
Assertion lcfrlem1 φHX=0˙

Proof

Step Hyp Ref Expression
1 lcfrlem1.v V=BaseU
2 lcfrlem1.s S=ScalarU
3 lcfrlem1.q ×˙=S
4 lcfrlem1.z 0˙=0S
5 lcfrlem1.i I=invrS
6 lcfrlem1.f F=LFnlU
7 lcfrlem1.d D=LDualU
8 lcfrlem1.t ·˙=D
9 lcfrlem1.m -˙=-D
10 lcfrlem1.u φULVec
11 lcfrlem1.e φEF
12 lcfrlem1.g φGF
13 lcfrlem1.x φXV
14 lcfrlem1.n φGX0˙
15 lcfrlem1.h H=E-˙IGX×˙EX·˙G
16 15 fveq1i HX=E-˙IGX×˙EX·˙GX
17 eqid -S=-S
18 lveclmod ULVecULMod
19 10 18 syl φULMod
20 eqid BaseS=BaseS
21 2 lvecdrng ULVecSDivRing
22 10 21 syl φSDivRing
23 2 20 1 6 lflcl ULVecGFXVGXBaseS
24 10 12 13 23 syl3anc φGXBaseS
25 20 4 5 drnginvrcl SDivRingGXBaseSGX0˙IGXBaseS
26 22 24 14 25 syl3anc φIGXBaseS
27 2 20 1 6 lflcl ULVecEFXVEXBaseS
28 10 11 13 27 syl3anc φEXBaseS
29 2 20 3 lmodmcl ULModIGXBaseSEXBaseSIGX×˙EXBaseS
30 19 26 28 29 syl3anc φIGX×˙EXBaseS
31 6 2 20 7 8 19 30 12 ldualvscl φIGX×˙EX·˙GF
32 1 2 17 6 7 9 19 11 31 13 ldualvsubval φE-˙IGX×˙EX·˙GX=EX-SIGX×˙EX·˙GX
33 6 1 2 20 3 7 8 10 30 12 13 ldualvsval φIGX×˙EX·˙GX=GX×˙IGX×˙EX
34 eqid 1S=1S
35 20 4 3 34 5 drnginvrr SDivRingGXBaseSGX0˙GX×˙IGX=1S
36 22 24 14 35 syl3anc φGX×˙IGX=1S
37 36 oveq1d φGX×˙IGX×˙EX=1S×˙EX
38 2 lmodring ULModSRing
39 19 38 syl φSRing
40 20 3 ringass SRingGXBaseSIGXBaseSEXBaseSGX×˙IGX×˙EX=GX×˙IGX×˙EX
41 39 24 26 28 40 syl13anc φGX×˙IGX×˙EX=GX×˙IGX×˙EX
42 20 3 34 ringlidm SRingEXBaseS1S×˙EX=EX
43 39 28 42 syl2anc φ1S×˙EX=EX
44 37 41 43 3eqtr3d φGX×˙IGX×˙EX=EX
45 33 44 eqtrd φIGX×˙EX·˙GX=EX
46 45 oveq2d φEX-SIGX×˙EX·˙GX=EX-SEX
47 2 lmodfgrp ULModSGrp
48 19 47 syl φSGrp
49 20 4 17 grpsubid SGrpEXBaseSEX-SEX=0˙
50 48 28 49 syl2anc φEX-SEX=0˙
51 32 46 50 3eqtrd φE-˙IGX×˙EX·˙GX=0˙
52 16 51 eqtrid φHX=0˙