Description: Lemma for lcfr . Note that X is z in Mario's notes. (Contributed by NM, 27-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lcfrlem1.v | |
|
lcfrlem1.s | |
||
lcfrlem1.q | |
||
lcfrlem1.z | |
||
lcfrlem1.i | |
||
lcfrlem1.f | |
||
lcfrlem1.d | |
||
lcfrlem1.t | |
||
lcfrlem1.m | |
||
lcfrlem1.u | |
||
lcfrlem1.e | |
||
lcfrlem1.g | |
||
lcfrlem1.x | |
||
lcfrlem1.n | |
||
lcfrlem1.h | |
||
Assertion | lcfrlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem1.v | |
|
2 | lcfrlem1.s | |
|
3 | lcfrlem1.q | |
|
4 | lcfrlem1.z | |
|
5 | lcfrlem1.i | |
|
6 | lcfrlem1.f | |
|
7 | lcfrlem1.d | |
|
8 | lcfrlem1.t | |
|
9 | lcfrlem1.m | |
|
10 | lcfrlem1.u | |
|
11 | lcfrlem1.e | |
|
12 | lcfrlem1.g | |
|
13 | lcfrlem1.x | |
|
14 | lcfrlem1.n | |
|
15 | lcfrlem1.h | |
|
16 | 15 | fveq1i | |
17 | eqid | |
|
18 | lveclmod | |
|
19 | 10 18 | syl | |
20 | eqid | |
|
21 | 2 | lvecdrng | |
22 | 10 21 | syl | |
23 | 2 20 1 6 | lflcl | |
24 | 10 12 13 23 | syl3anc | |
25 | 20 4 5 | drnginvrcl | |
26 | 22 24 14 25 | syl3anc | |
27 | 2 20 1 6 | lflcl | |
28 | 10 11 13 27 | syl3anc | |
29 | 2 20 3 | lmodmcl | |
30 | 19 26 28 29 | syl3anc | |
31 | 6 2 20 7 8 19 30 12 | ldualvscl | |
32 | 1 2 17 6 7 9 19 11 31 13 | ldualvsubval | |
33 | 6 1 2 20 3 7 8 10 30 12 13 | ldualvsval | |
34 | eqid | |
|
35 | 20 4 3 34 5 | drnginvrr | |
36 | 22 24 14 35 | syl3anc | |
37 | 36 | oveq1d | |
38 | 2 | lmodring | |
39 | 19 38 | syl | |
40 | 20 3 | ringass | |
41 | 39 24 26 28 40 | syl13anc | |
42 | 20 3 34 | ringlidm | |
43 | 39 28 42 | syl2anc | |
44 | 37 41 43 | 3eqtr3d | |
45 | 33 44 | eqtrd | |
46 | 45 | oveq2d | |
47 | 2 | lmodfgrp | |
48 | 19 47 | syl | |
49 | 20 4 17 | grpsubid | |
50 | 48 28 49 | syl2anc | |
51 | 32 46 50 | 3eqtrd | |
52 | 16 51 | eqtrid | |