Metamath Proof Explorer


Theorem lcfrvalsnN

Description: Reconstruction from the dual space span of a singleton. (Contributed by NM, 19-Feb-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lcfrvalsn.h H=LHypK
lcfrvalsn.o ˙=ocHKW
lcfrvalsn.u U=DVecHKW
lcfrvalsn.f F=LFnlU
lcfrvalsn.l L=LKerU
lcfrvalsn.d D=LDualU
lcfrvalsn.n N=LSpanD
lcfrvalsn.k φKHLWH
lcfrvalsn.g φGF
lcfrvalsn.q Q=fR˙Lf
lcfrvalsn.r R=NG
Assertion lcfrvalsnN φQ=˙LG

Proof

Step Hyp Ref Expression
1 lcfrvalsn.h H=LHypK
2 lcfrvalsn.o ˙=ocHKW
3 lcfrvalsn.u U=DVecHKW
4 lcfrvalsn.f F=LFnlU
5 lcfrvalsn.l L=LKerU
6 lcfrvalsn.d D=LDualU
7 lcfrvalsn.n N=LSpanD
8 lcfrvalsn.k φKHLWH
9 lcfrvalsn.g φGF
10 lcfrvalsn.q Q=fR˙Lf
11 lcfrvalsn.r R=NG
12 eliun xfR˙LffRx˙Lf
13 11 eleq2i fRfNG
14 8 adantr φfNGKHLWH
15 eqid BaseU=BaseU
16 1 3 8 dvhlmod φULMod
17 16 adantr φfNGULMod
18 6 16 lduallmod φDLMod
19 eqid BaseD=BaseD
20 4 6 19 16 9 ldualelvbase φGBaseD
21 eqid LSubSpD=LSubSpD
22 19 21 7 lspsncl DLModGBaseDNGLSubSpD
23 18 20 22 syl2anc φNGLSubSpD
24 19 21 lssel NGLSubSpDfNGfBaseD
25 23 24 sylan φfNGfBaseD
26 4 6 19 16 ldualvbase φBaseD=F
27 26 adantr φfNGBaseD=F
28 25 27 eleqtrd φfNGfF
29 15 4 5 17 28 lkrssv φfNGLfBaseU
30 eqid ScalarD=ScalarD
31 eqid BaseScalarD=BaseScalarD
32 eqid D=D
33 30 31 19 32 7 lspsnel DLModGBaseDfNGkBaseScalarDf=kDG
34 18 20 33 syl2anc φfNGkBaseScalarDf=kDG
35 eqid ScalarU=ScalarU
36 eqid BaseScalarU=BaseScalarU
37 35 36 6 30 31 16 ldualsbase φBaseScalarD=BaseScalarU
38 37 rexeqdv φkBaseScalarDf=kDGkBaseScalarUf=kDG
39 34 38 bitrd φfNGkBaseScalarUf=kDG
40 39 biimpa φfNGkBaseScalarUf=kDG
41 1 3 8 dvhlvec φULVec
42 41 adantr φfNGULVec
43 9 adantr φfNGGF
44 35 36 4 5 6 32 42 43 28 lkrss2N φfNGLGLfkBaseScalarUf=kDG
45 40 44 mpbird φfNGLGLf
46 1 3 15 2 dochss KHLWHLfBaseULGLf˙Lf˙LG
47 14 29 45 46 syl3anc φfNG˙Lf˙LG
48 47 sseld φfNGx˙Lfx˙LG
49 48 ex φfNGx˙Lfx˙LG
50 13 49 biimtrid φfRx˙Lfx˙LG
51 50 rexlimdv φfRx˙Lfx˙LG
52 19 7 lspsnid DLModGBaseDGNG
53 18 20 52 syl2anc φGNG
54 53 11 eleqtrrdi φGR
55 2fveq3 f=G˙Lf=˙LG
56 55 eleq2d f=Gx˙Lfx˙LG
57 56 rspcev GRx˙LGfRx˙Lf
58 54 57 sylan φx˙LGfRx˙Lf
59 58 ex φx˙LGfRx˙Lf
60 51 59 impbid φfRx˙Lfx˙LG
61 12 60 bitrid φxfR˙Lfx˙LG
62 61 eqrdv φfR˙Lf=˙LG
63 10 62 eqtrid φQ=˙LG