Description: Reconstruction from the dual space span of a singleton. (Contributed by NM, 19-Feb-2015) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lcfrvalsn.h | |
|
lcfrvalsn.o | |
||
lcfrvalsn.u | |
||
lcfrvalsn.f | |
||
lcfrvalsn.l | |
||
lcfrvalsn.d | |
||
lcfrvalsn.n | |
||
lcfrvalsn.k | |
||
lcfrvalsn.g | |
||
lcfrvalsn.q | |
||
lcfrvalsn.r | |
||
Assertion | lcfrvalsnN | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrvalsn.h | |
|
2 | lcfrvalsn.o | |
|
3 | lcfrvalsn.u | |
|
4 | lcfrvalsn.f | |
|
5 | lcfrvalsn.l | |
|
6 | lcfrvalsn.d | |
|
7 | lcfrvalsn.n | |
|
8 | lcfrvalsn.k | |
|
9 | lcfrvalsn.g | |
|
10 | lcfrvalsn.q | |
|
11 | lcfrvalsn.r | |
|
12 | eliun | |
|
13 | 11 | eleq2i | |
14 | 8 | adantr | |
15 | eqid | |
|
16 | 1 3 8 | dvhlmod | |
17 | 16 | adantr | |
18 | 6 16 | lduallmod | |
19 | eqid | |
|
20 | 4 6 19 16 9 | ldualelvbase | |
21 | eqid | |
|
22 | 19 21 7 | lspsncl | |
23 | 18 20 22 | syl2anc | |
24 | 19 21 | lssel | |
25 | 23 24 | sylan | |
26 | 4 6 19 16 | ldualvbase | |
27 | 26 | adantr | |
28 | 25 27 | eleqtrd | |
29 | 15 4 5 17 28 | lkrssv | |
30 | eqid | |
|
31 | eqid | |
|
32 | eqid | |
|
33 | 30 31 19 32 7 | lspsnel | |
34 | 18 20 33 | syl2anc | |
35 | eqid | |
|
36 | eqid | |
|
37 | 35 36 6 30 31 16 | ldualsbase | |
38 | 37 | rexeqdv | |
39 | 34 38 | bitrd | |
40 | 39 | biimpa | |
41 | 1 3 8 | dvhlvec | |
42 | 41 | adantr | |
43 | 9 | adantr | |
44 | 35 36 4 5 6 32 42 43 28 | lkrss2N | |
45 | 40 44 | mpbird | |
46 | 1 3 15 2 | dochss | |
47 | 14 29 45 46 | syl3anc | |
48 | 47 | sseld | |
49 | 48 | ex | |
50 | 13 49 | biimtrid | |
51 | 50 | rexlimdv | |
52 | 19 7 | lspsnid | |
53 | 18 20 52 | syl2anc | |
54 | 53 11 | eleqtrrdi | |
55 | 2fveq3 | |
|
56 | 55 | eleq2d | |
57 | 56 | rspcev | |
58 | 54 57 | sylan | |
59 | 58 | ex | |
60 | 51 59 | impbid | |
61 | 12 60 | bitrid | |
62 | 61 | eqrdv | |
63 | 10 62 | eqtrid | |