Description: The set of functionals with closed kernels is a subspace. Part of proof of Theorem 3.6 of Holland95 p. 218, line 20, stating "The f_M that arise this way generate a subspace F of E'". Our proof was suggested by Mario Carneiro, 5-Jan-2015. (Contributed by NM, 18-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lclkr.h | |
|
lclkr.u | |
||
lclkr.o | |
||
lclkr.f | |
||
lclkr.l | |
||
lclkr.d | |
||
lclkr.s | |
||
lclkr.c | |
||
lclkr.k | |
||
Assertion | lclkr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkr.h | |
|
2 | lclkr.u | |
|
3 | lclkr.o | |
|
4 | lclkr.f | |
|
5 | lclkr.l | |
|
6 | lclkr.d | |
|
7 | lclkr.s | |
|
8 | lclkr.c | |
|
9 | lclkr.k | |
|
10 | ssrab2 | |
|
11 | 10 | a1i | |
12 | 8 | a1i | |
13 | eqid | |
|
14 | 1 2 9 | dvhlmod | |
15 | 4 6 13 14 | ldualvbase | |
16 | 11 12 15 | 3sstr4d | |
17 | eqid | |
|
18 | eqid | |
|
19 | eqid | |
|
20 | 17 18 19 4 | lfl0f | |
21 | 14 20 | syl | |
22 | 1 2 3 19 9 | dochoc1 | |
23 | eqid | |
|
24 | 17 18 19 4 5 | lkr0f | |
25 | 14 20 24 | syl2anc2 | |
26 | 23 25 | mpbiri | |
27 | 26 | fveq2d | |
28 | 27 | fveq2d | |
29 | 22 28 26 | 3eqtr4d | |
30 | 8 | lcfl1lem | |
31 | 21 29 30 | sylanbrc | |
32 | 31 | ne0d | |
33 | eqid | |
|
34 | 9 | adantr | |
35 | eqid | |
|
36 | eqid | |
|
37 | simpr1 | |
|
38 | eqid | |
|
39 | eqid | |
|
40 | 17 35 6 38 39 14 | ldualsbase | |
41 | 40 | adantr | |
42 | 37 41 | eleqtrd | |
43 | simpr2 | |
|
44 | 1 3 2 4 5 6 17 35 36 8 34 42 43 | lclkrlem1 | |
45 | simpr3 | |
|
46 | 1 3 2 4 5 6 33 8 34 44 45 | lclkrlem2 | |
47 | 46 | ralrimivvva | |
48 | 38 39 13 33 36 7 | islss | |
49 | 16 32 47 48 | syl3anbrc | |