Metamath Proof Explorer


Theorem lclkr

Description: The set of functionals with closed kernels is a subspace. Part of proof of Theorem 3.6 of Holland95 p. 218, line 20, stating "The f_M that arise this way generate a subspace F of E'". Our proof was suggested by Mario Carneiro, 5-Jan-2015. (Contributed by NM, 18-Jan-2015)

Ref Expression
Hypotheses lclkr.h H=LHypK
lclkr.u U=DVecHKW
lclkr.o ˙=ocHKW
lclkr.f F=LFnlU
lclkr.l L=LKerU
lclkr.d D=LDualU
lclkr.s S=LSubSpD
lclkr.c C=fF|˙˙Lf=Lf
lclkr.k φKHLWH
Assertion lclkr φCS

Proof

Step Hyp Ref Expression
1 lclkr.h H=LHypK
2 lclkr.u U=DVecHKW
3 lclkr.o ˙=ocHKW
4 lclkr.f F=LFnlU
5 lclkr.l L=LKerU
6 lclkr.d D=LDualU
7 lclkr.s S=LSubSpD
8 lclkr.c C=fF|˙˙Lf=Lf
9 lclkr.k φKHLWH
10 ssrab2 fF|˙˙Lf=LfF
11 10 a1i φfF|˙˙Lf=LfF
12 8 a1i φC=fF|˙˙Lf=Lf
13 eqid BaseD=BaseD
14 1 2 9 dvhlmod φULMod
15 4 6 13 14 ldualvbase φBaseD=F
16 11 12 15 3sstr4d φCBaseD
17 eqid ScalarU=ScalarU
18 eqid 0ScalarU=0ScalarU
19 eqid BaseU=BaseU
20 17 18 19 4 lfl0f ULModBaseU×0ScalarUF
21 14 20 syl φBaseU×0ScalarUF
22 1 2 3 19 9 dochoc1 φ˙˙BaseU=BaseU
23 eqid BaseU×0ScalarU=BaseU×0ScalarU
24 17 18 19 4 5 lkr0f ULModBaseU×0ScalarUFLBaseU×0ScalarU=BaseUBaseU×0ScalarU=BaseU×0ScalarU
25 14 20 24 syl2anc2 φLBaseU×0ScalarU=BaseUBaseU×0ScalarU=BaseU×0ScalarU
26 23 25 mpbiri φLBaseU×0ScalarU=BaseU
27 26 fveq2d φ˙LBaseU×0ScalarU=˙BaseU
28 27 fveq2d φ˙˙LBaseU×0ScalarU=˙˙BaseU
29 22 28 26 3eqtr4d φ˙˙LBaseU×0ScalarU=LBaseU×0ScalarU
30 8 lcfl1lem BaseU×0ScalarUCBaseU×0ScalarUF˙˙LBaseU×0ScalarU=LBaseU×0ScalarU
31 21 29 30 sylanbrc φBaseU×0ScalarUC
32 31 ne0d φC
33 eqid +D=+D
34 9 adantr φxBaseScalarDaCbCKHLWH
35 eqid BaseScalarU=BaseScalarU
36 eqid D=D
37 simpr1 φxBaseScalarDaCbCxBaseScalarD
38 eqid ScalarD=ScalarD
39 eqid BaseScalarD=BaseScalarD
40 17 35 6 38 39 14 ldualsbase φBaseScalarD=BaseScalarU
41 40 adantr φxBaseScalarDaCbCBaseScalarD=BaseScalarU
42 37 41 eleqtrd φxBaseScalarDaCbCxBaseScalarU
43 simpr2 φxBaseScalarDaCbCaC
44 1 3 2 4 5 6 17 35 36 8 34 42 43 lclkrlem1 φxBaseScalarDaCbCxDaC
45 simpr3 φxBaseScalarDaCbCbC
46 1 3 2 4 5 6 33 8 34 44 45 lclkrlem2 φxBaseScalarDaCbCxDa+DbC
47 46 ralrimivvva φxBaseScalarDaCbCxDa+DbC
48 38 39 13 33 36 7 islss CSCBaseDCxBaseScalarDaCbCxDa+DbC
49 16 32 47 48 syl3anbrc φCS