Metamath Proof Explorer


Theorem lclkrlem2e

Description: Lemma for lclkr . The kernel of the sum is closed when the kernels of the summands are equal and closed. (Contributed by NM, 17-Jan-2015)

Ref Expression
Hypotheses lclkrlem2e.h H=LHypK
lclkrlem2e.o ˙=ocHKW
lclkrlem2e.u U=DVecHKW
lclkrlem2e.v V=BaseU
lclkrlem2e.z 0˙=0U
lclkrlem2e.f F=LFnlU
lclkrlem2e.l L=LKerU
lclkrlem2e.d D=LDualU
lclkrlem2e.p +˙=+D
lclkrlem2e.k φKHLWH
lclkrlem2e.x φXV0˙
lclkrlem2e.e φEF
lclkrlem2e.g φGF
lclkrlem2e.le φLE=˙X
lclkrlem2e.ne φLE=LG
Assertion lclkrlem2e φ˙˙LE+˙G=LE+˙G

Proof

Step Hyp Ref Expression
1 lclkrlem2e.h H=LHypK
2 lclkrlem2e.o ˙=ocHKW
3 lclkrlem2e.u U=DVecHKW
4 lclkrlem2e.v V=BaseU
5 lclkrlem2e.z 0˙=0U
6 lclkrlem2e.f F=LFnlU
7 lclkrlem2e.l L=LKerU
8 lclkrlem2e.d D=LDualU
9 lclkrlem2e.p +˙=+D
10 lclkrlem2e.k φKHLWH
11 lclkrlem2e.x φXV0˙
12 lclkrlem2e.e φEF
13 lclkrlem2e.g φGF
14 lclkrlem2e.le φLE=˙X
15 lclkrlem2e.ne φLE=LG
16 10 adantr φLE+˙GLSHypUKHLWH
17 11 eldifad φXV
18 17 snssd φXV
19 18 adantr φLE+˙GLSHypUXV
20 eqid DIsoHKW=DIsoHKW
21 1 20 3 4 2 dochcl KHLWHXV˙XranDIsoHKW
22 16 19 21 syl2anc φLE+˙GLSHypU˙XranDIsoHKW
23 1 20 2 dochoc KHLWH˙XranDIsoHKW˙˙˙X=˙X
24 16 22 23 syl2anc φLE+˙GLSHypU˙˙˙X=˙X
25 14 adantr φLE+˙GLSHypULE=˙X
26 inidm LELE=LE
27 15 ineq2d φLELE=LELG
28 26 27 eqtr3id φLE=LELG
29 1 3 10 dvhlmod φULMod
30 6 7 8 9 29 12 13 lkrin φLELGLE+˙G
31 28 30 eqsstrd φLELE+˙G
32 31 adantr φLE+˙GLSHypULELE+˙G
33 eqid LSHypU=LSHypU
34 1 3 10 dvhlvec φULVec
35 34 adantr φLE+˙GLSHypUULVec
36 eqid LSpanU=LSpanU
37 1 3 2 4 36 10 18 dochocsp φ˙LSpanUX=˙X
38 37 adantr φLE+˙GLSHypU˙LSpanUX=˙X
39 25 38 eqtr4d φLE+˙GLSHypULE=˙LSpanUX
40 eqid LSAtomsU=LSAtomsU
41 4 36 5 40 29 11 lsatlspsn φLSpanUXLSAtomsU
42 41 adantr φLE+˙GLSHypULSpanUXLSAtomsU
43 1 3 2 40 33 16 42 dochsatshp φLE+˙GLSHypU˙LSpanUXLSHypU
44 39 43 eqeltrd φLE+˙GLSHypULELSHypU
45 simpr φLE+˙GLSHypULE+˙GLSHypU
46 33 35 44 45 lshpcmp φLE+˙GLSHypULELE+˙GLE=LE+˙G
47 32 46 mpbid φLE+˙GLSHypULE=LE+˙G
48 25 47 eqtr3d φLE+˙GLSHypU˙X=LE+˙G
49 48 fveq2d φLE+˙GLSHypU˙˙X=˙LE+˙G
50 49 fveq2d φLE+˙GLSHypU˙˙˙X=˙˙LE+˙G
51 24 50 48 3eqtr3d φLE+˙GLSHypU˙˙LE+˙G=LE+˙G
52 51 ex φLE+˙GLSHypU˙˙LE+˙G=LE+˙G
53 1 3 2 4 10 dochoc1 φ˙˙V=V
54 2fveq3 LE+˙G=V˙˙LE+˙G=˙˙V
55 id LE+˙G=VLE+˙G=V
56 54 55 eqeq12d LE+˙G=V˙˙LE+˙G=LE+˙G˙˙V=V
57 53 56 syl5ibrcom φLE+˙G=V˙˙LE+˙G=LE+˙G
58 6 8 9 29 12 13 ldualvaddcl φE+˙GF
59 4 33 6 7 34 58 lkrshpor φLE+˙GLSHypULE+˙G=V
60 52 57 59 mpjaod φ˙˙LE+˙G=LE+˙G