Description: Lemma for lclkr . The kernel of the sum is closed when the kernels of the summands are equal and closed. (Contributed by NM, 17-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lclkrlem2e.h | |
|
lclkrlem2e.o | |
||
lclkrlem2e.u | |
||
lclkrlem2e.v | |
||
lclkrlem2e.z | |
||
lclkrlem2e.f | |
||
lclkrlem2e.l | |
||
lclkrlem2e.d | |
||
lclkrlem2e.p | |
||
lclkrlem2e.k | |
||
lclkrlem2e.x | |
||
lclkrlem2e.e | |
||
lclkrlem2e.g | |
||
lclkrlem2e.le | |
||
lclkrlem2e.ne | |
||
Assertion | lclkrlem2e | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2e.h | |
|
2 | lclkrlem2e.o | |
|
3 | lclkrlem2e.u | |
|
4 | lclkrlem2e.v | |
|
5 | lclkrlem2e.z | |
|
6 | lclkrlem2e.f | |
|
7 | lclkrlem2e.l | |
|
8 | lclkrlem2e.d | |
|
9 | lclkrlem2e.p | |
|
10 | lclkrlem2e.k | |
|
11 | lclkrlem2e.x | |
|
12 | lclkrlem2e.e | |
|
13 | lclkrlem2e.g | |
|
14 | lclkrlem2e.le | |
|
15 | lclkrlem2e.ne | |
|
16 | 10 | adantr | |
17 | 11 | eldifad | |
18 | 17 | snssd | |
19 | 18 | adantr | |
20 | eqid | |
|
21 | 1 20 3 4 2 | dochcl | |
22 | 16 19 21 | syl2anc | |
23 | 1 20 2 | dochoc | |
24 | 16 22 23 | syl2anc | |
25 | 14 | adantr | |
26 | inidm | |
|
27 | 15 | ineq2d | |
28 | 26 27 | eqtr3id | |
29 | 1 3 10 | dvhlmod | |
30 | 6 7 8 9 29 12 13 | lkrin | |
31 | 28 30 | eqsstrd | |
32 | 31 | adantr | |
33 | eqid | |
|
34 | 1 3 10 | dvhlvec | |
35 | 34 | adantr | |
36 | eqid | |
|
37 | 1 3 2 4 36 10 18 | dochocsp | |
38 | 37 | adantr | |
39 | 25 38 | eqtr4d | |
40 | eqid | |
|
41 | 4 36 5 40 29 11 | lsatlspsn | |
42 | 41 | adantr | |
43 | 1 3 2 40 33 16 42 | dochsatshp | |
44 | 39 43 | eqeltrd | |
45 | simpr | |
|
46 | 33 35 44 45 | lshpcmp | |
47 | 32 46 | mpbid | |
48 | 25 47 | eqtr3d | |
49 | 48 | fveq2d | |
50 | 49 | fveq2d | |
51 | 24 50 48 | 3eqtr3d | |
52 | 51 | ex | |
53 | 1 3 2 4 10 | dochoc1 | |
54 | 2fveq3 | |
|
55 | id | |
|
56 | 54 55 | eqeq12d | |
57 | 53 56 | syl5ibrcom | |
58 | 6 8 9 29 12 13 | ldualvaddcl | |
59 | 4 33 6 7 34 58 | lkrshpor | |
60 | 52 57 59 | mpjaod | |