Metamath Proof Explorer


Theorem lcvexchlem5

Description: Lemma for lcvexch . (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lcvexch.s S=LSubSpW
lcvexch.p ˙=LSSumW
lcvexch.c C=LW
lcvexch.w φWLMod
lcvexch.t φTS
lcvexch.u φUS
lcvexch.g φTUCU
Assertion lcvexchlem5 φTCT˙U

Proof

Step Hyp Ref Expression
1 lcvexch.s S=LSubSpW
2 lcvexch.p ˙=LSSumW
3 lcvexch.c C=LW
4 lcvexch.w φWLMod
5 lcvexch.t φTS
6 lcvexch.u φUS
7 lcvexch.g φTUCU
8 1 lssincl WLModTSUSTUS
9 4 5 6 8 syl3anc φTUS
10 1 3 4 9 6 7 lcvpss φTUU
11 1 2 3 4 5 6 lcvexchlem1 φTT˙UTUU
12 10 11 mpbird φTT˙U
13 simp3l φsSTssT˙UTs
14 13 ssrind φsSTssT˙UTUsU
15 inss2 sUU
16 14 15 jctir φsSTssT˙UTUsUsUU
17 7 3ad2ant1 φsSTssT˙UTUCU
18 1 3 4 9 6 lcvbr3 φTUCUTUUrSTUrrUr=TUr=U
19 18 adantr φsSTUCUTUUrSTUrrUr=TUr=U
20 4 adantr φsSWLMod
21 simpr φsSsS
22 6 adantr φsSUS
23 1 lssincl WLModsSUSsUS
24 20 21 22 23 syl3anc φsSsUS
25 sseq2 r=sUTUrTUsU
26 sseq1 r=sUrUsUU
27 25 26 anbi12d r=sUTUrrUTUsUsUU
28 eqeq1 r=sUr=TUsU=TU
29 eqeq1 r=sUr=UsU=U
30 28 29 orbi12d r=sUr=TUr=UsU=TUsU=U
31 27 30 imbi12d r=sUTUrrUr=TUr=UTUsUsUUsU=TUsU=U
32 31 rspcv sUSrSTUrrUr=TUr=UTUsUsUUsU=TUsU=U
33 24 32 syl φsSrSTUrrUr=TUr=UTUsUsUUsU=TUsU=U
34 33 adantld φsSTUUrSTUrrUr=TUr=UTUsUsUUsU=TUsU=U
35 19 34 sylbid φsSTUCUTUsUsUUsU=TUsU=U
36 35 3adant3 φsSTssT˙UTUCUTUsUsUUsU=TUsU=U
37 17 36 mpd φsSTssT˙UTUsUsUUsU=TUsU=U
38 16 37 mpd φsSTssT˙UsU=TUsU=U
39 oveq1 sU=TUsU˙T=TU˙T
40 4 3ad2ant1 φsSTssT˙UWLMod
41 5 3ad2ant1 φsSTssT˙UTS
42 6 3ad2ant1 φsSTssT˙UUS
43 simp2 φsSTssT˙UsS
44 simp3r φsSTssT˙UsT˙U
45 1 2 3 40 41 42 43 13 44 lcvexchlem3 φsSTssT˙UsU˙T=s
46 1 lsssssubg WLModSSubGrpW
47 4 46 syl φSSubGrpW
48 47 9 sseldd φTUSubGrpW
49 47 5 sseldd φTSubGrpW
50 inss1 TUT
51 50 a1i φTUT
52 2 lsmss1 TUSubGrpWTSubGrpWTUTTU˙T=T
53 48 49 51 52 syl3anc φTU˙T=T
54 53 3ad2ant1 φsSTssT˙UTU˙T=T
55 45 54 eqeq12d φsSTssT˙UsU˙T=TU˙Ts=T
56 39 55 imbitrid φsSTssT˙UsU=TUs=T
57 oveq1 sU=UsU˙T=U˙T
58 lmodabl WLModWAbel
59 4 58 syl φWAbel
60 47 6 sseldd φUSubGrpW
61 2 lsmcom WAbelUSubGrpWTSubGrpWU˙T=T˙U
62 59 60 49 61 syl3anc φU˙T=T˙U
63 62 3ad2ant1 φsSTssT˙UU˙T=T˙U
64 45 63 eqeq12d φsSTssT˙UsU˙T=U˙Ts=T˙U
65 57 64 imbitrid φsSTssT˙UsU=Us=T˙U
66 56 65 orim12d φsSTssT˙UsU=TUsU=Us=Ts=T˙U
67 38 66 mpd φsSTssT˙Us=Ts=T˙U
68 67 3exp φsSTssT˙Us=Ts=T˙U
69 68 ralrimiv φsSTssT˙Us=Ts=T˙U
70 1 2 lsmcl WLModTSUST˙US
71 4 5 6 70 syl3anc φT˙US
72 1 3 4 5 71 lcvbr3 φTCT˙UTT˙UsSTssT˙Us=Ts=T˙U
73 12 69 72 mpbir2and φTCT˙U