| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcvexch.s |
|
| 2 |
|
lcvexch.p |
|
| 3 |
|
lcvexch.c |
|
| 4 |
|
lcvexch.w |
|
| 5 |
|
lcvexch.t |
|
| 6 |
|
lcvexch.u |
|
| 7 |
|
lcvexch.g |
|
| 8 |
1
|
lssincl |
|
| 9 |
4 5 6 8
|
syl3anc |
|
| 10 |
1 3 4 9 6 7
|
lcvpss |
|
| 11 |
1 2 3 4 5 6
|
lcvexchlem1 |
|
| 12 |
10 11
|
mpbird |
|
| 13 |
|
simp3l |
|
| 14 |
13
|
ssrind |
|
| 15 |
|
inss2 |
|
| 16 |
14 15
|
jctir |
|
| 17 |
7
|
3ad2ant1 |
|
| 18 |
1 3 4 9 6
|
lcvbr3 |
|
| 19 |
18
|
adantr |
|
| 20 |
4
|
adantr |
|
| 21 |
|
simpr |
|
| 22 |
6
|
adantr |
|
| 23 |
1
|
lssincl |
|
| 24 |
20 21 22 23
|
syl3anc |
|
| 25 |
|
sseq2 |
|
| 26 |
|
sseq1 |
|
| 27 |
25 26
|
anbi12d |
|
| 28 |
|
eqeq1 |
|
| 29 |
|
eqeq1 |
|
| 30 |
28 29
|
orbi12d |
|
| 31 |
27 30
|
imbi12d |
|
| 32 |
31
|
rspcv |
|
| 33 |
24 32
|
syl |
|
| 34 |
33
|
adantld |
|
| 35 |
19 34
|
sylbid |
|
| 36 |
35
|
3adant3 |
|
| 37 |
17 36
|
mpd |
|
| 38 |
16 37
|
mpd |
|
| 39 |
|
oveq1 |
|
| 40 |
4
|
3ad2ant1 |
|
| 41 |
5
|
3ad2ant1 |
|
| 42 |
6
|
3ad2ant1 |
|
| 43 |
|
simp2 |
|
| 44 |
|
simp3r |
|
| 45 |
1 2 3 40 41 42 43 13 44
|
lcvexchlem3 |
|
| 46 |
1
|
lsssssubg |
|
| 47 |
4 46
|
syl |
|
| 48 |
47 9
|
sseldd |
|
| 49 |
47 5
|
sseldd |
|
| 50 |
|
inss1 |
|
| 51 |
50
|
a1i |
|
| 52 |
2
|
lsmss1 |
|
| 53 |
48 49 51 52
|
syl3anc |
|
| 54 |
53
|
3ad2ant1 |
|
| 55 |
45 54
|
eqeq12d |
|
| 56 |
39 55
|
imbitrid |
|
| 57 |
|
oveq1 |
|
| 58 |
|
lmodabl |
|
| 59 |
4 58
|
syl |
|
| 60 |
47 6
|
sseldd |
|
| 61 |
2
|
lsmcom |
|
| 62 |
59 60 49 61
|
syl3anc |
|
| 63 |
62
|
3ad2ant1 |
|
| 64 |
45 63
|
eqeq12d |
|
| 65 |
57 64
|
imbitrid |
|
| 66 |
56 65
|
orim12d |
|
| 67 |
38 66
|
mpd |
|
| 68 |
67
|
3exp |
|
| 69 |
68
|
ralrimiv |
|
| 70 |
1 2
|
lsmcl |
|
| 71 |
4 5 6 70
|
syl3anc |
|
| 72 |
1 3 4 5 71
|
lcvbr3 |
|
| 73 |
12 69 72
|
mpbir2and |
|