Metamath Proof Explorer


Theorem lcvexchlem5

Description: Lemma for lcvexch . (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lcvexch.s S = LSubSp W
lcvexch.p ˙ = LSSum W
lcvexch.c C = L W
lcvexch.w φ W LMod
lcvexch.t φ T S
lcvexch.u φ U S
lcvexch.g φ T U C U
Assertion lcvexchlem5 φ T C T ˙ U

Proof

Step Hyp Ref Expression
1 lcvexch.s S = LSubSp W
2 lcvexch.p ˙ = LSSum W
3 lcvexch.c C = L W
4 lcvexch.w φ W LMod
5 lcvexch.t φ T S
6 lcvexch.u φ U S
7 lcvexch.g φ T U C U
8 1 lssincl W LMod T S U S T U S
9 4 5 6 8 syl3anc φ T U S
10 1 3 4 9 6 7 lcvpss φ T U U
11 1 2 3 4 5 6 lcvexchlem1 φ T T ˙ U T U U
12 10 11 mpbird φ T T ˙ U
13 simp3l φ s S T s s T ˙ U T s
14 13 ssrind φ s S T s s T ˙ U T U s U
15 inss2 s U U
16 14 15 jctir φ s S T s s T ˙ U T U s U s U U
17 7 3ad2ant1 φ s S T s s T ˙ U T U C U
18 1 3 4 9 6 lcvbr3 φ T U C U T U U r S T U r r U r = T U r = U
19 18 adantr φ s S T U C U T U U r S T U r r U r = T U r = U
20 4 adantr φ s S W LMod
21 simpr φ s S s S
22 6 adantr φ s S U S
23 1 lssincl W LMod s S U S s U S
24 20 21 22 23 syl3anc φ s S s U S
25 sseq2 r = s U T U r T U s U
26 sseq1 r = s U r U s U U
27 25 26 anbi12d r = s U T U r r U T U s U s U U
28 eqeq1 r = s U r = T U s U = T U
29 eqeq1 r = s U r = U s U = U
30 28 29 orbi12d r = s U r = T U r = U s U = T U s U = U
31 27 30 imbi12d r = s U T U r r U r = T U r = U T U s U s U U s U = T U s U = U
32 31 rspcv s U S r S T U r r U r = T U r = U T U s U s U U s U = T U s U = U
33 24 32 syl φ s S r S T U r r U r = T U r = U T U s U s U U s U = T U s U = U
34 33 adantld φ s S T U U r S T U r r U r = T U r = U T U s U s U U s U = T U s U = U
35 19 34 sylbid φ s S T U C U T U s U s U U s U = T U s U = U
36 35 3adant3 φ s S T s s T ˙ U T U C U T U s U s U U s U = T U s U = U
37 17 36 mpd φ s S T s s T ˙ U T U s U s U U s U = T U s U = U
38 16 37 mpd φ s S T s s T ˙ U s U = T U s U = U
39 oveq1 s U = T U s U ˙ T = T U ˙ T
40 4 3ad2ant1 φ s S T s s T ˙ U W LMod
41 5 3ad2ant1 φ s S T s s T ˙ U T S
42 6 3ad2ant1 φ s S T s s T ˙ U U S
43 simp2 φ s S T s s T ˙ U s S
44 simp3r φ s S T s s T ˙ U s T ˙ U
45 1 2 3 40 41 42 43 13 44 lcvexchlem3 φ s S T s s T ˙ U s U ˙ T = s
46 1 lsssssubg W LMod S SubGrp W
47 4 46 syl φ S SubGrp W
48 47 9 sseldd φ T U SubGrp W
49 47 5 sseldd φ T SubGrp W
50 inss1 T U T
51 50 a1i φ T U T
52 2 lsmss1 T U SubGrp W T SubGrp W T U T T U ˙ T = T
53 48 49 51 52 syl3anc φ T U ˙ T = T
54 53 3ad2ant1 φ s S T s s T ˙ U T U ˙ T = T
55 45 54 eqeq12d φ s S T s s T ˙ U s U ˙ T = T U ˙ T s = T
56 39 55 syl5ib φ s S T s s T ˙ U s U = T U s = T
57 oveq1 s U = U s U ˙ T = U ˙ T
58 lmodabl W LMod W Abel
59 4 58 syl φ W Abel
60 47 6 sseldd φ U SubGrp W
61 2 lsmcom W Abel U SubGrp W T SubGrp W U ˙ T = T ˙ U
62 59 60 49 61 syl3anc φ U ˙ T = T ˙ U
63 62 3ad2ant1 φ s S T s s T ˙ U U ˙ T = T ˙ U
64 45 63 eqeq12d φ s S T s s T ˙ U s U ˙ T = U ˙ T s = T ˙ U
65 57 64 syl5ib φ s S T s s T ˙ U s U = U s = T ˙ U
66 56 65 orim12d φ s S T s s T ˙ U s U = T U s U = U s = T s = T ˙ U
67 38 66 mpd φ s S T s s T ˙ U s = T s = T ˙ U
68 67 3exp φ s S T s s T ˙ U s = T s = T ˙ U
69 68 ralrimiv φ s S T s s T ˙ U s = T s = T ˙ U
70 1 2 lsmcl W LMod T S U S T ˙ U S
71 4 5 6 70 syl3anc φ T ˙ U S
72 1 3 4 5 71 lcvbr3 φ T C T ˙ U T T ˙ U s S T s s T ˙ U s = T s = T ˙ U
73 12 69 72 mpbir2and φ T C T ˙ U