Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Gamma function
lgamgulmlem4
Next ⟩
lgamgulmlem5
Metamath Proof Explorer
Ascii
Unicode
Theorem
lgamgulmlem4
Description:
Lemma for
lgamgulm
.
(Contributed by
Mario Carneiro
, 3-Jul-2017)
Ref
Expression
Hypotheses
lgamgulm.r
⊢
φ
→
R
∈
ℕ
lgamgulm.u
⊢
U
=
x
∈
ℂ
|
x
≤
R
∧
∀
k
∈
ℕ
0
1
R
≤
x
+
k
lgamgulm.g
⊢
G
=
m
∈
ℕ
⟼
z
∈
U
⟼
z
log
m
+
1
m
−
log
z
m
+
1
lgamgulm.t
π
⊢
T
=
m
∈
ℕ
⟼
if
2
R
≤
m
R
2
R
+
1
m
2
R
log
m
+
1
m
+
log
R
+
1
m
+
π
Assertion
lgamgulmlem4
⊢
φ
→
seq
1
+
T
∈
dom
⇝
Proof
Step
Hyp
Ref
Expression
1
lgamgulm.r
⊢
φ
→
R
∈
ℕ
2
lgamgulm.u
⊢
U
=
x
∈
ℂ
|
x
≤
R
∧
∀
k
∈
ℕ
0
1
R
≤
x
+
k
3
lgamgulm.g
⊢
G
=
m
∈
ℕ
⟼
z
∈
U
⟼
z
log
m
+
1
m
−
log
z
m
+
1
4
lgamgulm.t
π
⊢
T
=
m
∈
ℕ
⟼
if
2
R
≤
m
R
2
R
+
1
m
2
R
log
m
+
1
m
+
log
R
+
1
m
+
π
5
2nn
⊢
2
∈
ℕ
6
5
a1i
⊢
φ
→
2
∈
ℕ
7
6
1
nnmulcld
⊢
φ
→
2
R
∈
ℕ
8
7
nnzd
⊢
φ
→
2
R
∈
ℤ
9
eluzle
⊢
n
∈
ℤ
≥
2
R
→
2
R
≤
n
10
9
adantl
⊢
φ
∧
n
∈
ℤ
≥
2
R
→
2
R
≤
n
11
10
iftrued
π
⊢
φ
∧
n
∈
ℤ
≥
2
R
→
if
2
R
≤
n
R
2
R
+
1
n
2
R
log
n
+
1
n
+
log
R
+
1
n
+
π
=
R
2
R
+
1
n
2
12
eluznn
⊢
2
R
∈
ℕ
∧
n
∈
ℤ
≥
2
R
→
n
∈
ℕ
13
7
12
sylan
⊢
φ
∧
n
∈
ℤ
≥
2
R
→
n
∈
ℕ
14
breq2
⊢
m
=
n
→
2
R
≤
m
↔
2
R
≤
n
15
oveq1
⊢
m
=
n
→
m
2
=
n
2
16
15
oveq2d
⊢
m
=
n
→
2
R
+
1
m
2
=
2
R
+
1
n
2
17
16
oveq2d
⊢
m
=
n
→
R
2
R
+
1
m
2
=
R
2
R
+
1
n
2
18
oveq1
⊢
m
=
n
→
m
+
1
=
n
+
1
19
id
⊢
m
=
n
→
m
=
n
20
18
19
oveq12d
⊢
m
=
n
→
m
+
1
m
=
n
+
1
n
21
20
fveq2d
⊢
m
=
n
→
log
m
+
1
m
=
log
n
+
1
n
22
21
oveq2d
⊢
m
=
n
→
R
log
m
+
1
m
=
R
log
n
+
1
n
23
oveq2
⊢
m
=
n
→
R
+
1
m
=
R
+
1
n
24
23
fveq2d
⊢
m
=
n
→
log
R
+
1
m
=
log
R
+
1
n
25
24
oveq1d
π
π
⊢
m
=
n
→
log
R
+
1
m
+
π
=
log
R
+
1
n
+
π
26
22
25
oveq12d
π
π
⊢
m
=
n
→
R
log
m
+
1
m
+
log
R
+
1
m
+
π
=
R
log
n
+
1
n
+
log
R
+
1
n
+
π
27
14
17
26
ifbieq12d
π
π
⊢
m
=
n
→
if
2
R
≤
m
R
2
R
+
1
m
2
R
log
m
+
1
m
+
log
R
+
1
m
+
π
=
if
2
R
≤
n
R
2
R
+
1
n
2
R
log
n
+
1
n
+
log
R
+
1
n
+
π
28
ovex
⊢
R
2
R
+
1
n
2
∈
V
29
ovex
π
⊢
R
log
n
+
1
n
+
log
R
+
1
n
+
π
∈
V
30
28
29
ifex
π
⊢
if
2
R
≤
n
R
2
R
+
1
n
2
R
log
n
+
1
n
+
log
R
+
1
n
+
π
∈
V
31
27
4
30
fvmpt
π
⊢
n
∈
ℕ
→
T
n
=
if
2
R
≤
n
R
2
R
+
1
n
2
R
log
n
+
1
n
+
log
R
+
1
n
+
π
32
13
31
syl
π
⊢
φ
∧
n
∈
ℤ
≥
2
R
→
T
n
=
if
2
R
≤
n
R
2
R
+
1
n
2
R
log
n
+
1
n
+
log
R
+
1
n
+
π
33
eqid
⊢
m
∈
ℕ
⟼
R
2
R
+
1
m
2
=
m
∈
ℕ
⟼
R
2
R
+
1
m
2
34
17
33
28
fvmpt
⊢
n
∈
ℕ
→
m
∈
ℕ
⟼
R
2
R
+
1
m
2
n
=
R
2
R
+
1
n
2
35
13
34
syl
⊢
φ
∧
n
∈
ℤ
≥
2
R
→
m
∈
ℕ
⟼
R
2
R
+
1
m
2
n
=
R
2
R
+
1
n
2
36
11
32
35
3eqtr4d
⊢
φ
∧
n
∈
ℤ
≥
2
R
→
T
n
=
m
∈
ℕ
⟼
R
2
R
+
1
m
2
n
37
8
36
seqfeq
⊢
φ
→
seq
2
R
+
T
=
seq
2
R
+
m
∈
ℕ
⟼
R
2
R
+
1
m
2
38
nnuz
⊢
ℕ
=
ℤ
≥
1
39
1zzd
⊢
φ
→
1
∈
ℤ
40
1
nncnd
⊢
φ
→
R
∈
ℂ
41
2cnd
⊢
φ
→
2
∈
ℂ
42
1cnd
⊢
φ
→
1
∈
ℂ
43
40
42
addcld
⊢
φ
→
R
+
1
∈
ℂ
44
41
43
mulcld
⊢
φ
→
2
R
+
1
∈
ℂ
45
40
44
mulcld
⊢
φ
→
R
2
R
+
1
∈
ℂ
46
1lt2
⊢
1
<
2
47
2re
⊢
2
∈
ℝ
48
rere
⊢
2
∈
ℝ
→
ℜ
2
=
2
49
47
48
ax-mp
⊢
ℜ
2
=
2
50
46
49
breqtrri
⊢
1
<
ℜ
2
51
50
a1i
⊢
φ
→
1
<
ℜ
2
52
oveq1
⊢
m
=
n
→
m
−
2
=
n
−
2
53
eqid
⊢
m
∈
ℕ
⟼
m
−
2
=
m
∈
ℕ
⟼
m
−
2
54
ovex
⊢
n
−
2
∈
V
55
52
53
54
fvmpt
⊢
n
∈
ℕ
→
m
∈
ℕ
⟼
m
−
2
n
=
n
−
2
56
55
adantl
⊢
φ
∧
n
∈
ℕ
→
m
∈
ℕ
⟼
m
−
2
n
=
n
−
2
57
41
51
56
zetacvg
⊢
φ
→
seq
1
+
m
∈
ℕ
⟼
m
−
2
∈
dom
⇝
58
climdm
⊢
seq
1
+
m
∈
ℕ
⟼
m
−
2
∈
dom
⇝
↔
seq
1
+
m
∈
ℕ
⟼
m
−
2
⇝
⇝
seq
1
+
m
∈
ℕ
⟼
m
−
2
59
57
58
sylib
⊢
φ
→
seq
1
+
m
∈
ℕ
⟼
m
−
2
⇝
⇝
seq
1
+
m
∈
ℕ
⟼
m
−
2
60
simpr
⊢
φ
∧
n
∈
ℕ
→
n
∈
ℕ
61
60
nncnd
⊢
φ
∧
n
∈
ℕ
→
n
∈
ℂ
62
2cnd
⊢
φ
∧
n
∈
ℕ
→
2
∈
ℂ
63
62
negcld
⊢
φ
∧
n
∈
ℕ
→
−
2
∈
ℂ
64
61
63
cxpcld
⊢
φ
∧
n
∈
ℕ
→
n
−
2
∈
ℂ
65
56
64
eqeltrd
⊢
φ
∧
n
∈
ℕ
→
m
∈
ℕ
⟼
m
−
2
n
∈
ℂ
66
40
adantr
⊢
φ
∧
n
∈
ℕ
→
R
∈
ℂ
67
1cnd
⊢
φ
∧
n
∈
ℕ
→
1
∈
ℂ
68
66
67
addcld
⊢
φ
∧
n
∈
ℕ
→
R
+
1
∈
ℂ
69
62
68
mulcld
⊢
φ
∧
n
∈
ℕ
→
2
R
+
1
∈
ℂ
70
66
69
mulcld
⊢
φ
∧
n
∈
ℕ
→
R
2
R
+
1
∈
ℂ
71
61
sqcld
⊢
φ
∧
n
∈
ℕ
→
n
2
∈
ℂ
72
60
nnne0d
⊢
φ
∧
n
∈
ℕ
→
n
≠
0
73
2z
⊢
2
∈
ℤ
74
73
a1i
⊢
φ
∧
n
∈
ℕ
→
2
∈
ℤ
75
61
72
74
expne0d
⊢
φ
∧
n
∈
ℕ
→
n
2
≠
0
76
70
71
75
divrecd
⊢
φ
∧
n
∈
ℕ
→
R
2
R
+
1
n
2
=
R
2
R
+
1
1
n
2
77
66
69
71
75
divassd
⊢
φ
∧
n
∈
ℕ
→
R
2
R
+
1
n
2
=
R
2
R
+
1
n
2
78
61
72
62
cxpnegd
⊢
φ
∧
n
∈
ℕ
→
n
−
2
=
1
n
2
79
61
72
74
cxpexpzd
⊢
φ
∧
n
∈
ℕ
→
n
2
=
n
2
80
79
oveq2d
⊢
φ
∧
n
∈
ℕ
→
1
n
2
=
1
n
2
81
78
80
eqtr2d
⊢
φ
∧
n
∈
ℕ
→
1
n
2
=
n
−
2
82
81
oveq2d
⊢
φ
∧
n
∈
ℕ
→
R
2
R
+
1
1
n
2
=
R
2
R
+
1
n
−
2
83
76
77
82
3eqtr3d
⊢
φ
∧
n
∈
ℕ
→
R
2
R
+
1
n
2
=
R
2
R
+
1
n
−
2
84
34
adantl
⊢
φ
∧
n
∈
ℕ
→
m
∈
ℕ
⟼
R
2
R
+
1
m
2
n
=
R
2
R
+
1
n
2
85
56
oveq2d
⊢
φ
∧
n
∈
ℕ
→
R
2
R
+
1
m
∈
ℕ
⟼
m
−
2
n
=
R
2
R
+
1
n
−
2
86
83
84
85
3eqtr4d
⊢
φ
∧
n
∈
ℕ
→
m
∈
ℕ
⟼
R
2
R
+
1
m
2
n
=
R
2
R
+
1
m
∈
ℕ
⟼
m
−
2
n
87
38
39
45
59
65
86
isermulc2
⊢
φ
→
seq
1
+
m
∈
ℕ
⟼
R
2
R
+
1
m
2
⇝
R
2
R
+
1
⇝
seq
1
+
m
∈
ℕ
⟼
m
−
2
88
climrel
⊢
Rel
⇝
89
88
releldmi
⊢
seq
1
+
m
∈
ℕ
⟼
R
2
R
+
1
m
2
⇝
R
2
R
+
1
⇝
seq
1
+
m
∈
ℕ
⟼
m
−
2
→
seq
1
+
m
∈
ℕ
⟼
R
2
R
+
1
m
2
∈
dom
⇝
90
87
89
syl
⊢
φ
→
seq
1
+
m
∈
ℕ
⟼
R
2
R
+
1
m
2
∈
dom
⇝
91
69
71
75
divcld
⊢
φ
∧
n
∈
ℕ
→
2
R
+
1
n
2
∈
ℂ
92
66
91
mulcld
⊢
φ
∧
n
∈
ℕ
→
R
2
R
+
1
n
2
∈
ℂ
93
84
92
eqeltrd
⊢
φ
∧
n
∈
ℕ
→
m
∈
ℕ
⟼
R
2
R
+
1
m
2
n
∈
ℂ
94
38
7
93
iserex
⊢
φ
→
seq
1
+
m
∈
ℕ
⟼
R
2
R
+
1
m
2
∈
dom
⇝
↔
seq
2
R
+
m
∈
ℕ
⟼
R
2
R
+
1
m
2
∈
dom
⇝
95
90
94
mpbid
⊢
φ
→
seq
2
R
+
m
∈
ℕ
⟼
R
2
R
+
1
m
2
∈
dom
⇝
96
37
95
eqeltrd
⊢
φ
→
seq
2
R
+
T
∈
dom
⇝
97
31
adantl
π
⊢
φ
∧
n
∈
ℕ
→
T
n
=
if
2
R
≤
n
R
2
R
+
1
n
2
R
log
n
+
1
n
+
log
R
+
1
n
+
π
98
1
adantr
⊢
φ
∧
n
∈
ℕ
→
R
∈
ℕ
99
98
nnred
⊢
φ
∧
n
∈
ℕ
→
R
∈
ℝ
100
47
a1i
⊢
φ
∧
n
∈
ℕ
→
2
∈
ℝ
101
1red
⊢
φ
∧
n
∈
ℕ
→
1
∈
ℝ
102
99
101
readdcld
⊢
φ
∧
n
∈
ℕ
→
R
+
1
∈
ℝ
103
100
102
remulcld
⊢
φ
∧
n
∈
ℕ
→
2
R
+
1
∈
ℝ
104
60
nnsqcld
⊢
φ
∧
n
∈
ℕ
→
n
2
∈
ℕ
105
103
104
nndivred
⊢
φ
∧
n
∈
ℕ
→
2
R
+
1
n
2
∈
ℝ
106
99
105
remulcld
⊢
φ
∧
n
∈
ℕ
→
R
2
R
+
1
n
2
∈
ℝ
107
60
peano2nnd
⊢
φ
∧
n
∈
ℕ
→
n
+
1
∈
ℕ
108
107
nnrpd
⊢
φ
∧
n
∈
ℕ
→
n
+
1
∈
ℝ
+
109
60
nnrpd
⊢
φ
∧
n
∈
ℕ
→
n
∈
ℝ
+
110
108
109
rpdivcld
⊢
φ
∧
n
∈
ℕ
→
n
+
1
n
∈
ℝ
+
111
110
relogcld
⊢
φ
∧
n
∈
ℕ
→
log
n
+
1
n
∈
ℝ
112
99
111
remulcld
⊢
φ
∧
n
∈
ℕ
→
R
log
n
+
1
n
∈
ℝ
113
98
peano2nnd
⊢
φ
∧
n
∈
ℕ
→
R
+
1
∈
ℕ
114
113
nnrpd
⊢
φ
∧
n
∈
ℕ
→
R
+
1
∈
ℝ
+
115
114
109
rpmulcld
⊢
φ
∧
n
∈
ℕ
→
R
+
1
n
∈
ℝ
+
116
115
relogcld
⊢
φ
∧
n
∈
ℕ
→
log
R
+
1
n
∈
ℝ
117
pire
π
⊢
π
∈
ℝ
118
117
a1i
π
⊢
φ
∧
n
∈
ℕ
→
π
∈
ℝ
119
116
118
readdcld
π
⊢
φ
∧
n
∈
ℕ
→
log
R
+
1
n
+
π
∈
ℝ
120
112
119
readdcld
π
⊢
φ
∧
n
∈
ℕ
→
R
log
n
+
1
n
+
log
R
+
1
n
+
π
∈
ℝ
121
106
120
ifcld
π
⊢
φ
∧
n
∈
ℕ
→
if
2
R
≤
n
R
2
R
+
1
n
2
R
log
n
+
1
n
+
log
R
+
1
n
+
π
∈
ℝ
122
97
121
eqeltrd
⊢
φ
∧
n
∈
ℕ
→
T
n
∈
ℝ
123
122
recnd
⊢
φ
∧
n
∈
ℕ
→
T
n
∈
ℂ
124
38
7
123
iserex
⊢
φ
→
seq
1
+
T
∈
dom
⇝
↔
seq
2
R
+
T
∈
dom
⇝
125
96
124
mpbird
⊢
φ
→
seq
1
+
T
∈
dom
⇝