Metamath Proof Explorer


Theorem lgamgulmlem4

Description: Lemma for lgamgulm . (Contributed by Mario Carneiro, 3-Jul-2017)

Ref Expression
Hypotheses lgamgulm.r φR
lgamgulm.u U=x|xRk01Rx+k
lgamgulm.g G=mzUzlogm+1mlogzm+1
lgamgulm.t T=mif2RmR2R+1m2Rlogm+1m+logR+1m+π
Assertion lgamgulmlem4 φseq1+Tdom

Proof

Step Hyp Ref Expression
1 lgamgulm.r φR
2 lgamgulm.u U=x|xRk01Rx+k
3 lgamgulm.g G=mzUzlogm+1mlogzm+1
4 lgamgulm.t T=mif2RmR2R+1m2Rlogm+1m+logR+1m+π
5 2nn 2
6 5 a1i φ2
7 6 1 nnmulcld φ2R
8 7 nnzd φ2R
9 eluzle n2R2Rn
10 9 adantl φn2R2Rn
11 10 iftrued φn2Rif2RnR2R+1n2Rlogn+1n+logR+1n+π=R2R+1n2
12 eluznn 2Rn2Rn
13 7 12 sylan φn2Rn
14 breq2 m=n2Rm2Rn
15 oveq1 m=nm2=n2
16 15 oveq2d m=n2R+1m2=2R+1n2
17 16 oveq2d m=nR2R+1m2=R2R+1n2
18 oveq1 m=nm+1=n+1
19 id m=nm=n
20 18 19 oveq12d m=nm+1m=n+1n
21 20 fveq2d m=nlogm+1m=logn+1n
22 21 oveq2d m=nRlogm+1m=Rlogn+1n
23 oveq2 m=nR+1m=R+1n
24 23 fveq2d m=nlogR+1m=logR+1n
25 24 oveq1d m=nlogR+1m+π=logR+1n+π
26 22 25 oveq12d m=nRlogm+1m+logR+1m+π=Rlogn+1n+logR+1n+π
27 14 17 26 ifbieq12d m=nif2RmR2R+1m2Rlogm+1m+logR+1m+π=if2RnR2R+1n2Rlogn+1n+logR+1n+π
28 ovex R2R+1n2V
29 ovex Rlogn+1n+logR+1n+πV
30 28 29 ifex if2RnR2R+1n2Rlogn+1n+logR+1n+πV
31 27 4 30 fvmpt nTn=if2RnR2R+1n2Rlogn+1n+logR+1n+π
32 13 31 syl φn2RTn=if2RnR2R+1n2Rlogn+1n+logR+1n+π
33 eqid mR2R+1m2=mR2R+1m2
34 17 33 28 fvmpt nmR2R+1m2n=R2R+1n2
35 13 34 syl φn2RmR2R+1m2n=R2R+1n2
36 11 32 35 3eqtr4d φn2RTn=mR2R+1m2n
37 8 36 seqfeq φseq2R+T=seq2R+mR2R+1m2
38 nnuz =1
39 1zzd φ1
40 1 nncnd φR
41 2cnd φ2
42 1cnd φ1
43 40 42 addcld φR+1
44 41 43 mulcld φ2R+1
45 40 44 mulcld φR2R+1
46 1lt2 1<2
47 2re 2
48 rere 22=2
49 47 48 ax-mp 2=2
50 46 49 breqtrri 1<2
51 50 a1i φ1<2
52 oveq1 m=nm2=n2
53 eqid mm2=mm2
54 ovex n2V
55 52 53 54 fvmpt nmm2n=n2
56 55 adantl φnmm2n=n2
57 41 51 56 zetacvg φseq1+mm2dom
58 climdm seq1+mm2domseq1+mm2seq1+mm2
59 57 58 sylib φseq1+mm2seq1+mm2
60 simpr φnn
61 60 nncnd φnn
62 2cnd φn2
63 62 negcld φn2
64 61 63 cxpcld φnn2
65 56 64 eqeltrd φnmm2n
66 40 adantr φnR
67 1cnd φn1
68 66 67 addcld φnR+1
69 62 68 mulcld φn2R+1
70 66 69 mulcld φnR2R+1
71 61 sqcld φnn2
72 60 nnne0d φnn0
73 2z 2
74 73 a1i φn2
75 61 72 74 expne0d φnn20
76 70 71 75 divrecd φnR2R+1n2=R2R+11n2
77 66 69 71 75 divassd φnR2R+1n2=R2R+1n2
78 61 72 62 cxpnegd φnn2=1n2
79 61 72 74 cxpexpzd φnn2=n2
80 79 oveq2d φn1n2=1n2
81 78 80 eqtr2d φn1n2=n2
82 81 oveq2d φnR2R+11n2=R2R+1n2
83 76 77 82 3eqtr3d φnR2R+1n2=R2R+1n2
84 34 adantl φnmR2R+1m2n=R2R+1n2
85 56 oveq2d φnR2R+1mm2n=R2R+1n2
86 83 84 85 3eqtr4d φnmR2R+1m2n=R2R+1mm2n
87 38 39 45 59 65 86 isermulc2 φseq1+mR2R+1m2R2R+1seq1+mm2
88 climrel Rel
89 88 releldmi seq1+mR2R+1m2R2R+1seq1+mm2seq1+mR2R+1m2dom
90 87 89 syl φseq1+mR2R+1m2dom
91 69 71 75 divcld φn2R+1n2
92 66 91 mulcld φnR2R+1n2
93 84 92 eqeltrd φnmR2R+1m2n
94 38 7 93 iserex φseq1+mR2R+1m2domseq2R+mR2R+1m2dom
95 90 94 mpbid φseq2R+mR2R+1m2dom
96 37 95 eqeltrd φseq2R+Tdom
97 31 adantl φnTn=if2RnR2R+1n2Rlogn+1n+logR+1n+π
98 1 adantr φnR
99 98 nnred φnR
100 47 a1i φn2
101 1red φn1
102 99 101 readdcld φnR+1
103 100 102 remulcld φn2R+1
104 60 nnsqcld φnn2
105 103 104 nndivred φn2R+1n2
106 99 105 remulcld φnR2R+1n2
107 60 peano2nnd φnn+1
108 107 nnrpd φnn+1+
109 60 nnrpd φnn+
110 108 109 rpdivcld φnn+1n+
111 110 relogcld φnlogn+1n
112 99 111 remulcld φnRlogn+1n
113 98 peano2nnd φnR+1
114 113 nnrpd φnR+1+
115 114 109 rpmulcld φnR+1n+
116 115 relogcld φnlogR+1n
117 pire π
118 117 a1i φnπ
119 116 118 readdcld φnlogR+1n+π
120 112 119 readdcld φnRlogn+1n+logR+1n+π
121 106 120 ifcld φnif2RnR2R+1n2Rlogn+1n+logR+1n+π
122 97 121 eqeltrd φnTn
123 122 recnd φnTn
124 38 7 123 iserex φseq1+Tdomseq2R+Tdom
125 96 124 mpbird φseq1+Tdom