Metamath Proof Explorer


Theorem lgsmod

Description: The Legendre (Jacobi) symbol is preserved under reduction mod n when n is odd. (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Assertion lgsmod AN¬2NAmodN/LN=A/LN

Proof

Step Hyp Ref Expression
1 zmodcl ANAmodN0
2 1 3adant3 AN¬2NAmodN0
3 2 nn0zd AN¬2NAmodN
4 3 ad2antrr AN¬2NnnNAmodN
5 simpr AN¬2Nnn
6 5 adantr AN¬2NnnNn
7 simpl3 AN¬2Nn¬2N
8 breq1 n=2nN2N
9 8 notbid n=2¬nN¬2N
10 7 9 syl5ibrcom AN¬2Nnn=2¬nN
11 10 necon2ad AN¬2NnnNn2
12 11 imp AN¬2NnnNn2
13 eldifsn n2nn2
14 6 12 13 sylanbrc AN¬2NnnNn2
15 oddprm n2n12
16 14 15 syl AN¬2NnnNn12
17 16 nnnn0d AN¬2NnnNn120
18 zexpcl AmodNn120AmodNn12
19 4 17 18 syl2anc AN¬2NnnNAmodNn12
20 19 zred AN¬2NnnNAmodNn12
21 simpll1 AN¬2NnnNA
22 zexpcl An120An12
23 21 17 22 syl2anc AN¬2NnnNAn12
24 23 zred AN¬2NnnNAn12
25 1red AN¬2NnnN1
26 prmnn nn
27 26 ad2antlr AN¬2NnnNn
28 27 nnrpd AN¬2NnnNn+
29 prmz nn
30 29 ad2antlr AN¬2NnnNn
31 simp2 AN¬2NN
32 31 ad2antrr AN¬2NnnNN
33 32 nnzd AN¬2NnnNN
34 4 21 zsubcld AN¬2NnnNAmodNA
35 simpr AN¬2NnnNnN
36 21 zred AN¬2NnnNA
37 32 nnrpd AN¬2NnnNN+
38 modabs2 AN+AmodNmodN=AmodN
39 36 37 38 syl2anc AN¬2NnnNAmodNmodN=AmodN
40 moddvds NAmodNAAmodNmodN=AmodNNAmodNA
41 32 4 21 40 syl3anc AN¬2NnnNAmodNmodN=AmodNNAmodNA
42 39 41 mpbid AN¬2NnnNNAmodNA
43 30 33 34 35 42 dvdstrd AN¬2NnnNnAmodNA
44 moddvds nAmodNAAmodNmodn=AmodnnAmodNA
45 27 4 21 44 syl3anc AN¬2NnnNAmodNmodn=AmodnnAmodNA
46 43 45 mpbird AN¬2NnnNAmodNmodn=Amodn
47 modexp AmodNAn120n+AmodNmodn=AmodnAmodNn12modn=An12modn
48 4 21 17 28 46 47 syl221anc AN¬2NnnNAmodNn12modn=An12modn
49 modadd1 AmodNn12An121n+AmodNn12modn=An12modnAmodNn12+1modn=An12+1modn
50 20 24 25 28 48 49 syl221anc AN¬2NnnNAmodNn12+1modn=An12+1modn
51 50 oveq1d AN¬2NnnNAmodNn12+1modn1=An12+1modn1
52 lgsval3 AmodNn2AmodN/Ln=AmodNn12+1modn1
53 4 14 52 syl2anc AN¬2NnnNAmodN/Ln=AmodNn12+1modn1
54 lgsval3 An2A/Ln=An12+1modn1
55 21 14 54 syl2anc AN¬2NnnNA/Ln=An12+1modn1
56 51 53 55 3eqtr4d AN¬2NnnNAmodN/Ln=A/Ln
57 56 oveq1d AN¬2NnnNAmodN/LnnpCntN=A/LnnpCntN
58 3 ad2antrr AN¬2Nn¬nNAmodN
59 29 ad2antlr AN¬2Nn¬nNn
60 lgscl AmodNnAmodN/Ln
61 58 59 60 syl2anc AN¬2Nn¬nNAmodN/Ln
62 61 zcnd AN¬2Nn¬nNAmodN/Ln
63 62 exp0d AN¬2Nn¬nNAmodN/Ln0=1
64 simpll1 AN¬2Nn¬nNA
65 lgscl AnA/Ln
66 64 59 65 syl2anc AN¬2Nn¬nNA/Ln
67 66 zcnd AN¬2Nn¬nNA/Ln
68 67 exp0d AN¬2Nn¬nNA/Ln0=1
69 63 68 eqtr4d AN¬2Nn¬nNAmodN/Ln0=A/Ln0
70 31 adantr AN¬2NnN
71 pceq0 nNnpCntN=0¬nN
72 5 70 71 syl2anc AN¬2NnnpCntN=0¬nN
73 72 biimpar AN¬2Nn¬nNnpCntN=0
74 73 oveq2d AN¬2Nn¬nNAmodN/LnnpCntN=AmodN/Ln0
75 73 oveq2d AN¬2Nn¬nNA/LnnpCntN=A/Ln0
76 69 74 75 3eqtr4d AN¬2Nn¬nNAmodN/LnnpCntN=A/LnnpCntN
77 57 76 pm2.61dan AN¬2NnAmodN/LnnpCntN=A/LnnpCntN
78 77 ifeq1da AN¬2NifnAmodN/LnnpCntN1=ifnA/LnnpCntN1
79 78 mpteq2dv AN¬2NnifnAmodN/LnnpCntN1=nifnA/LnnpCntN1
80 79 seqeq3d AN¬2Nseq1×nifnAmodN/LnnpCntN1=seq1×nifnA/LnnpCntN1
81 80 fveq1d AN¬2Nseq1×nifnAmodN/LnnpCntN1N=seq1×nifnA/LnnpCntN1N
82 eqid nifnAmodN/LnnpCntN1=nifnAmodN/LnnpCntN1
83 82 lgsval4a AmodNNAmodN/LN=seq1×nifnAmodN/LnnpCntN1N
84 3 31 83 syl2anc AN¬2NAmodN/LN=seq1×nifnAmodN/LnnpCntN1N
85 eqid nifnA/LnnpCntN1=nifnA/LnnpCntN1
86 85 lgsval4a ANA/LN=seq1×nifnA/LnnpCntN1N
87 86 3adant3 AN¬2NA/LN=seq1×nifnA/LnnpCntN1N
88 81 84 87 3eqtr4d AN¬2NAmodN/LN=A/LN