| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2z |
|
| 2 |
1
|
a1i |
|
| 3 |
|
fzfid |
|
| 4 |
|
neg1z |
|
| 5 |
|
elfznn0 |
|
| 6 |
|
zexpcl |
|
| 7 |
4 5 6
|
sylancr |
|
| 8 |
7
|
adantl |
|
| 9 |
|
eluzge2nn0 |
|
| 10 |
9
|
adantr |
|
| 11 |
10
|
adantr |
|
| 12 |
5
|
adantl |
|
| 13 |
11 12
|
nn0expcld |
|
| 14 |
13
|
nn0zd |
|
| 15 |
8 14
|
zmulcld |
|
| 16 |
3 15
|
fsumzcl |
|
| 17 |
16
|
3adant3 |
|
| 18 |
|
simp1 |
|
| 19 |
|
3z |
|
| 20 |
19
|
a1i |
|
| 21 |
|
eluzelz |
|
| 22 |
21
|
3ad2ant2 |
|
| 23 |
|
eluz2 |
|
| 24 |
|
2re |
|
| 25 |
24
|
a1i |
|
| 26 |
|
zre |
|
| 27 |
25 26
|
leloed |
|
| 28 |
|
zltp1le |
|
| 29 |
1 28
|
mpan |
|
| 30 |
29
|
biimpd |
|
| 31 |
|
df-3 |
|
| 32 |
31
|
breq1i |
|
| 33 |
30 32
|
imbitrrdi |
|
| 34 |
33
|
a1i |
|
| 35 |
34
|
com13 |
|
| 36 |
|
z2even |
|
| 37 |
|
breq2 |
|
| 38 |
36 37
|
mpbii |
|
| 39 |
38
|
pm2.24d |
|
| 40 |
39
|
a1d |
|
| 41 |
35 40
|
jaoi |
|
| 42 |
41
|
com12 |
|
| 43 |
27 42
|
sylbid |
|
| 44 |
43
|
imp |
|
| 45 |
44
|
3adant1 |
|
| 46 |
23 45
|
sylbi |
|
| 47 |
46
|
imp |
|
| 48 |
47
|
3adant1 |
|
| 49 |
|
eluz2 |
|
| 50 |
20 22 48 49
|
syl3anbrc |
|
| 51 |
|
eluzelcn |
|
| 52 |
51
|
3ad2ant1 |
|
| 53 |
|
eluz2nn |
|
| 54 |
53
|
3ad2ant2 |
|
| 55 |
|
simp3 |
|
| 56 |
52 54 55
|
oddpwp1fsum |
|
| 57 |
56
|
eqcomd |
|
| 58 |
|
eluzge2nn0 |
|
| 59 |
58
|
adantl |
|
| 60 |
10 59
|
nn0expcld |
|
| 61 |
60
|
nn0cnd |
|
| 62 |
|
peano2cn |
|
| 63 |
61 62
|
syl |
|
| 64 |
63
|
3adant3 |
|
| 65 |
17
|
zcnd |
|
| 66 |
|
eluz2nn |
|
| 67 |
66
|
peano2nnd |
|
| 68 |
67
|
nncnd |
|
| 69 |
67
|
nnne0d |
|
| 70 |
68 69
|
jca |
|
| 71 |
70
|
3ad2ant1 |
|
| 72 |
|
divmul |
|
| 73 |
64 65 71 72
|
syl3anc |
|
| 74 |
57 73
|
mpbird |
|
| 75 |
74
|
eqcomd |
|
| 76 |
|
lighneallem4a |
|
| 77 |
18 50 75 76
|
syl3anc |
|
| 78 |
|
eluz2 |
|
| 79 |
2 17 77 78
|
syl3anbrc |
|