Metamath Proof Explorer


Theorem lindfrn

Description: The range of an independent family is an independent set. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Assertion lindfrn WLModFLIndFWranFLIndSW

Proof

Step Hyp Ref Expression
1 eqid BaseW=BaseW
2 1 lindff FLIndFWWLModF:domFBaseW
3 2 ancoms WLModFLIndFWF:domFBaseW
4 3 frnd WLModFLIndFWranFBaseW
5 simpll WLModFLIndFWydomFWLMod
6 imassrn FdomFyranF
7 6 4 sstrid WLModFLIndFWFdomFyBaseW
8 7 adantr WLModFLIndFWydomFFdomFyBaseW
9 3 ffund WLModFLIndFWFunF
10 eldifsn xranFFyxranFxFy
11 funfn FunFFFndomF
12 fvelrnb FFndomFxranFkdomFFk=x
13 11 12 sylbi FunFxranFkdomFFk=x
14 13 adantr FunFydomFxranFkdomFFk=x
15 difss domFydomF
16 15 jctr FunFFunFdomFydomF
17 16 ad2antrr FunFydomFkdomFFkFyFunFdomFydomF
18 simpl kdomFFkFykdomF
19 fveq2 k=yFk=Fy
20 19 necon3i FkFyky
21 20 adantl kdomFFkFyky
22 eldifsn kdomFykdomFky
23 18 21 22 sylanbrc kdomFFkFykdomFy
24 23 adantl FunFydomFkdomFFkFykdomFy
25 funfvima2 FunFdomFydomFkdomFyFkFdomFy
26 17 24 25 sylc FunFydomFkdomFFkFyFkFdomFy
27 26 expr FunFydomFkdomFFkFyFkFdomFy
28 neeq1 Fk=xFkFyxFy
29 eleq1 Fk=xFkFdomFyxFdomFy
30 28 29 imbi12d Fk=xFkFyFkFdomFyxFyxFdomFy
31 27 30 syl5ibcom FunFydomFkdomFFk=xxFyxFdomFy
32 31 rexlimdva FunFydomFkdomFFk=xxFyxFdomFy
33 14 32 sylbid FunFydomFxranFxFyxFdomFy
34 33 impd FunFydomFxranFxFyxFdomFy
35 10 34 biimtrid FunFydomFxranFFyxFdomFy
36 35 ssrdv FunFydomFranFFyFdomFy
37 9 36 sylan WLModFLIndFWydomFranFFyFdomFy
38 eqid LSpanW=LSpanW
39 1 38 lspss WLModFdomFyBaseWranFFyFdomFyLSpanWranFFyLSpanWFdomFy
40 5 8 37 39 syl3anc WLModFLIndFWydomFLSpanWranFFyLSpanWFdomFy
41 40 adantrr WLModFLIndFWydomFkBaseScalarW0ScalarWLSpanWranFFyLSpanWFdomFy
42 simplr WLModFLIndFWydomFkBaseScalarW0ScalarWFLIndFW
43 simprl WLModFLIndFWydomFkBaseScalarW0ScalarWydomF
44 eldifi kBaseScalarW0ScalarWkBaseScalarW
45 44 ad2antll WLModFLIndFWydomFkBaseScalarW0ScalarWkBaseScalarW
46 eldifsni kBaseScalarW0ScalarWk0ScalarW
47 46 ad2antll WLModFLIndFWydomFkBaseScalarW0ScalarWk0ScalarW
48 eqid W=W
49 eqid ScalarW=ScalarW
50 eqid 0ScalarW=0ScalarW
51 eqid BaseScalarW=BaseScalarW
52 48 38 49 50 51 lindfind FLIndFWydomFkBaseScalarWk0ScalarW¬kWFyLSpanWFdomFy
53 42 43 45 47 52 syl22anc WLModFLIndFWydomFkBaseScalarW0ScalarW¬kWFyLSpanWFdomFy
54 41 53 ssneldd WLModFLIndFWydomFkBaseScalarW0ScalarW¬kWFyLSpanWranFFy
55 54 ralrimivva WLModFLIndFWydomFkBaseScalarW0ScalarW¬kWFyLSpanWranFFy
56 9 funfnd WLModFLIndFWFFndomF
57 oveq2 x=FykWx=kWFy
58 sneq x=Fyx=Fy
59 58 difeq2d x=FyranFx=ranFFy
60 59 fveq2d x=FyLSpanWranFx=LSpanWranFFy
61 57 60 eleq12d x=FykWxLSpanWranFxkWFyLSpanWranFFy
62 61 notbid x=Fy¬kWxLSpanWranFx¬kWFyLSpanWranFFy
63 62 ralbidv x=FykBaseScalarW0ScalarW¬kWxLSpanWranFxkBaseScalarW0ScalarW¬kWFyLSpanWranFFy
64 63 ralrn FFndomFxranFkBaseScalarW0ScalarW¬kWxLSpanWranFxydomFkBaseScalarW0ScalarW¬kWFyLSpanWranFFy
65 56 64 syl WLModFLIndFWxranFkBaseScalarW0ScalarW¬kWxLSpanWranFxydomFkBaseScalarW0ScalarW¬kWFyLSpanWranFFy
66 55 65 mpbird WLModFLIndFWxranFkBaseScalarW0ScalarW¬kWxLSpanWranFx
67 1 48 38 49 51 50 islinds2 WLModranFLIndSWranFBaseWxranFkBaseScalarW0ScalarW¬kWxLSpanWranFx
68 67 adantr WLModFLIndFWranFLIndSWranFBaseWxranFkBaseScalarW0ScalarW¬kWxLSpanWranFx
69 4 66 68 mpbir2and WLModFLIndFWranFLIndSW