Description: The range of an independent family is an independent set. (Contributed by Stefan O'Rear, 24-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | lindfrn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | 1 | lindff | |
3 | 2 | ancoms | |
4 | 3 | frnd | |
5 | simpll | |
|
6 | imassrn | |
|
7 | 6 4 | sstrid | |
8 | 7 | adantr | |
9 | 3 | ffund | |
10 | eldifsn | |
|
11 | funfn | |
|
12 | fvelrnb | |
|
13 | 11 12 | sylbi | |
14 | 13 | adantr | |
15 | difss | |
|
16 | 15 | jctr | |
17 | 16 | ad2antrr | |
18 | simpl | |
|
19 | fveq2 | |
|
20 | 19 | necon3i | |
21 | 20 | adantl | |
22 | eldifsn | |
|
23 | 18 21 22 | sylanbrc | |
24 | 23 | adantl | |
25 | funfvima2 | |
|
26 | 17 24 25 | sylc | |
27 | 26 | expr | |
28 | neeq1 | |
|
29 | eleq1 | |
|
30 | 28 29 | imbi12d | |
31 | 27 30 | syl5ibcom | |
32 | 31 | rexlimdva | |
33 | 14 32 | sylbid | |
34 | 33 | impd | |
35 | 10 34 | biimtrid | |
36 | 35 | ssrdv | |
37 | 9 36 | sylan | |
38 | eqid | |
|
39 | 1 38 | lspss | |
40 | 5 8 37 39 | syl3anc | |
41 | 40 | adantrr | |
42 | simplr | |
|
43 | simprl | |
|
44 | eldifi | |
|
45 | 44 | ad2antll | |
46 | eldifsni | |
|
47 | 46 | ad2antll | |
48 | eqid | |
|
49 | eqid | |
|
50 | eqid | |
|
51 | eqid | |
|
52 | 48 38 49 50 51 | lindfind | |
53 | 42 43 45 47 52 | syl22anc | |
54 | 41 53 | ssneldd | |
55 | 54 | ralrimivva | |
56 | 9 | funfnd | |
57 | oveq2 | |
|
58 | sneq | |
|
59 | 58 | difeq2d | |
60 | 59 | fveq2d | |
61 | 57 60 | eleq12d | |
62 | 61 | notbid | |
63 | 62 | ralbidv | |
64 | 63 | ralrn | |
65 | 56 64 | syl | |
66 | 55 65 | mpbird | |
67 | 1 48 38 49 51 50 | islinds2 | |
68 | 67 | adantr | |
69 | 4 66 68 | mpbir2and | |