Metamath Proof Explorer


Theorem lindslinindsimp2lem5

Description: Lemma 5 for lindslinindsimp2 . (Contributed by AV, 25-Apr-2019) (Revised by AV, 30-Jul-2019)

Ref Expression
Hypotheses lindslinind.r R=ScalarM
lindslinind.b B=BaseR
lindslinind.0 0˙=0R
lindslinind.z Z=0M
Assertion lindslinindsimp2lem5 SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZyB0˙gBSx¬finSupp0˙g¬yMx=glinCMSxfx=0˙

Proof

Step Hyp Ref Expression
1 lindslinind.r R=ScalarM
2 lindslinind.b B=BaseR
3 lindslinind.0 0˙=0R
4 lindslinind.z Z=0M
5 ax-1 fx=0˙yB0˙gBSx¬finSupp0˙g¬yMx=glinCMSxfx=0˙
6 5 2a1d fx=0˙SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZyB0˙gBSx¬finSupp0˙g¬yMx=glinCMSxfx=0˙
7 elmapi fBSf:SB
8 ffvelcdm f:SBxSfxB
9 8 expcom xSf:SBfxB
10 9 adantl SBaseMxSf:SBfxB
11 10 adantl SVMLModSBaseMxSf:SBfxB
12 11 com12 f:SBSVMLModSBaseMxSfxB
13 7 12 syl fBSSVMLModSBaseMxSfxB
14 13 adantr fBSfinSupp0˙fflinCMS=ZSVMLModSBaseMxSfxB
15 14 impcom SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZfxB
16 15 biantrurd SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=Zfx0˙fxBfx0˙
17 df-ne fx0˙¬fx=0˙
18 17 bicomi ¬fx=0˙fx0˙
19 eldifsn fxB0˙fxBfx0˙
20 16 18 19 3bitr4g SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=Z¬fx=0˙fxB0˙
21 1 lmodfgrp MLModRGrp
22 21 adantl SVMLModRGrp
23 22 adantr SVMLModSBaseMxSRGrp
24 23 adantr SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZRGrp
25 eqid invgR=invgR
26 2 3 25 grpinvnzcl RGrpfxB0˙invgRfxB0˙
27 24 26 sylan SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZfxB0˙invgRfxB0˙
28 27 ex SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZfxB0˙invgRfxB0˙
29 20 28 sylbid SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=Z¬fx=0˙invgRfxB0˙
30 oveq1 y=invgRfxyMx=invgRfxMx
31 30 eqeq1d y=invgRfxyMx=glinCMSxinvgRfxMx=glinCMSx
32 31 notbid y=invgRfx¬yMx=glinCMSx¬invgRfxMx=glinCMSx
33 32 orbi2d y=invgRfx¬finSupp0˙g¬yMx=glinCMSx¬finSupp0˙g¬invgRfxMx=glinCMSx
34 33 ralbidv y=invgRfxgBSx¬finSupp0˙g¬yMx=glinCMSxgBSx¬finSupp0˙g¬invgRfxMx=glinCMSx
35 34 rspcva invgRfxB0˙yB0˙gBSx¬finSupp0˙g¬yMx=glinCMSxgBSx¬finSupp0˙g¬invgRfxMx=glinCMSx
36 simpl SVMLModSBaseMxSSVMLMod
37 36 adantr SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZSVMLMod
38 simplrl SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZSBaseM
39 simplrr SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZxS
40 simpl fBSfinSupp0˙fflinCMS=ZfBS
41 40 adantl SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZfBS
42 eqid invgRfx=invgRfx
43 eqid fSx=fSx
44 1 2 3 4 42 43 lindslinindimp2lem2 SVMLModSBaseMxSfBSfSxBSx
45 37 38 39 41 44 syl13anc SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZfSxBSx
46 id g=fSxg=fSx
47 3 a1i g=fSx0˙=0R
48 46 47 breq12d g=fSxfinSupp0˙gfinSupp0RfSx
49 48 notbid g=fSx¬finSupp0˙g¬finSupp0RfSx
50 oveq1 g=fSxglinCMSx=fSxlinCMSx
51 50 eqeq2d g=fSxinvgRfxMx=glinCMSxinvgRfxMx=fSxlinCMSx
52 51 notbid g=fSx¬invgRfxMx=glinCMSx¬invgRfxMx=fSxlinCMSx
53 49 52 orbi12d g=fSx¬finSupp0˙g¬invgRfxMx=glinCMSx¬finSupp0RfSx¬invgRfxMx=fSxlinCMSx
54 53 rspcva fSxBSxgBSx¬finSupp0˙g¬invgRfxMx=glinCMSx¬finSupp0RfSx¬invgRfxMx=fSxlinCMSx
55 3 breq2i finSupp0˙ffinSupp0Rf
56 55 biimpi finSupp0˙ffinSupp0Rf
57 56 adantr finSupp0˙fflinCMS=ZfinSupp0Rf
58 57 adantl fBSfinSupp0˙fflinCMS=ZfinSupp0Rf
59 58 adantl SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZfinSupp0Rf
60 fvexd SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=Z0RV
61 59 60 fsuppres SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZfinSupp0RfSx
62 61 pm2.24d SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=Z¬finSupp0RfSxfx=0˙
63 62 com12 ¬finSupp0RfSxSVMLModSBaseMxSfBSfinSupp0˙fflinCMS=Zfx=0˙
64 simplr SVMLModSBaseMxSMLMod
65 64 adantr SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZMLMod
66 1 fveq2i BaseR=BaseScalarM
67 2 66 eqtr2i BaseScalarM=B
68 67 oveq1i BaseScalarMSx=BSx
69 45 68 eleqtrrdi SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZfSxBaseScalarMSx
70 ssdifss SBaseMSxBaseM
71 70 adantr SBaseMxSSxBaseM
72 71 adantl SVMLModSBaseMxSSxBaseM
73 difexg SVSxV
74 73 adantr SVMLModSxV
75 74 adantr SVMLModSBaseMxSSxV
76 elpwg SxVSx𝒫BaseMSxBaseM
77 75 76 syl SVMLModSBaseMxSSx𝒫BaseMSxBaseM
78 72 77 mpbird SVMLModSBaseMxSSx𝒫BaseM
79 78 adantr SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZSx𝒫BaseM
80 lincval MLModfSxBaseScalarMSxSx𝒫BaseMfSxlinCMSx=MzSxfSxzMz
81 65 69 79 80 syl3anc SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZfSxlinCMSx=MzSxfSxzMz
82 fvres zSxfSxz=fz
83 82 adantl SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZzSxfSxz=fz
84 83 oveq1d SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZzSxfSxzMz=fzMz
85 84 mpteq2dva SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZzSxfSxzMz=zSxfzMz
86 85 oveq2d SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZMzSxfSxzMz=MzSxfzMz
87 simplr SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZSBaseMxS
88 3anass fBSfinSupp0˙fflinCMS=ZfBSfinSupp0˙fflinCMS=Z
89 88 bicomi fBSfinSupp0˙fflinCMS=ZfBSfinSupp0˙fflinCMS=Z
90 89 biimpi fBSfinSupp0˙fflinCMS=ZfBSfinSupp0˙fflinCMS=Z
91 90 adantl SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZfBSfinSupp0˙fflinCMS=Z
92 1 2 3 4 42 43 lindslinindimp2lem4 SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZMzSxfzMz=invgRfxMx
93 37 87 91 92 syl3anc SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZMzSxfzMz=invgRfxMx
94 81 86 93 3eqtrrd SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZinvgRfxMx=fSxlinCMSx
95 94 pm2.24d SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=Z¬invgRfxMx=fSxlinCMSxfx=0˙
96 95 com12 ¬invgRfxMx=fSxlinCMSxSVMLModSBaseMxSfBSfinSupp0˙fflinCMS=Zfx=0˙
97 63 96 jaoi ¬finSupp0RfSx¬invgRfxMx=fSxlinCMSxSVMLModSBaseMxSfBSfinSupp0˙fflinCMS=Zfx=0˙
98 54 97 syl fSxBSxgBSx¬finSupp0˙g¬invgRfxMx=glinCMSxSVMLModSBaseMxSfBSfinSupp0˙fflinCMS=Zfx=0˙
99 98 ex fSxBSxgBSx¬finSupp0˙g¬invgRfxMx=glinCMSxSVMLModSBaseMxSfBSfinSupp0˙fflinCMS=Zfx=0˙
100 99 com23 fSxBSxSVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZgBSx¬finSupp0˙g¬invgRfxMx=glinCMSxfx=0˙
101 45 100 mpcom SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZgBSx¬finSupp0˙g¬invgRfxMx=glinCMSxfx=0˙
102 35 101 syl5 SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZinvgRfxB0˙yB0˙gBSx¬finSupp0˙g¬yMx=glinCMSxfx=0˙
103 102 expd SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZinvgRfxB0˙yB0˙gBSx¬finSupp0˙g¬yMx=glinCMSxfx=0˙
104 29 103 syldc ¬fx=0˙SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZyB0˙gBSx¬finSupp0˙g¬yMx=glinCMSxfx=0˙
105 104 expd ¬fx=0˙SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZyB0˙gBSx¬finSupp0˙g¬yMx=glinCMSxfx=0˙
106 6 105 pm2.61i SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZyB0˙gBSx¬finSupp0˙g¬yMx=glinCMSxfx=0˙