Metamath Proof Explorer


Theorem lmodprop2d

Description: If two structures have the same components (properties), one is a left module iff the other one is. This version of lmodpropd also breaks up the components of the scalar ring. (Contributed by Mario Carneiro, 27-Jun-2015)

Ref Expression
Hypotheses lmodprop2d.b1 φB=BaseK
lmodprop2d.b2 φB=BaseL
lmodprop2d.f F=ScalarK
lmodprop2d.g G=ScalarL
lmodprop2d.p1 φP=BaseF
lmodprop2d.p2 φP=BaseG
lmodprop2d.1 φxByBx+Ky=x+Ly
lmodprop2d.2 φxPyPx+Fy=x+Gy
lmodprop2d.3 φxPyPxFy=xGy
lmodprop2d.4 φxPyBxKy=xLy
Assertion lmodprop2d φKLModLLMod

Proof

Step Hyp Ref Expression
1 lmodprop2d.b1 φB=BaseK
2 lmodprop2d.b2 φB=BaseL
3 lmodprop2d.f F=ScalarK
4 lmodprop2d.g G=ScalarL
5 lmodprop2d.p1 φP=BaseF
6 lmodprop2d.p2 φP=BaseG
7 lmodprop2d.1 φxByBx+Ky=x+Ly
8 lmodprop2d.2 φxPyPx+Fy=x+Gy
9 lmodprop2d.3 φxPyPxFy=xGy
10 lmodprop2d.4 φxPyBxKy=xLy
11 lmodgrp KLModKGrp
12 11 a1i φKLModKGrp
13 eqid BaseK=BaseK
14 eqid +K=+K
15 eqid K=K
16 eqid BaseF=BaseF
17 eqid +F=+F
18 eqid F=F
19 eqid 1F=1F
20 13 14 15 3 16 17 18 19 islmod KLModKGrpFRingqBaseFrBaseFzBaseKwBaseKrKwBaseKrKw+Kz=rKw+KrKzq+FrKw=qKw+KrKwqFrKw=qKrKw1FKw=w
21 20 simp2bi KLModFRing
22 21 a1i φKLModFRing
23 simplr φKLModxPyBKLMod
24 simprl φKLModxPyBxP
25 5 ad2antrr φKLModxPyBP=BaseF
26 24 25 eleqtrd φKLModxPyBxBaseF
27 simprr φKLModxPyByB
28 1 ad2antrr φKLModxPyBB=BaseK
29 27 28 eleqtrd φKLModxPyByBaseK
30 13 3 15 16 lmodvscl KLModxBaseFyBaseKxKyBaseK
31 23 26 29 30 syl3anc φKLModxPyBxKyBaseK
32 31 28 eleqtrrd φKLModxPyBxKyB
33 32 ralrimivva φKLModxPyBxKyB
34 33 ex φKLModxPyBxKyB
35 12 22 34 3jcad φKLModKGrpFRingxPyBxKyB
36 lmodgrp LLModLGrp
37 1 2 7 grppropd φKGrpLGrp
38 36 37 imbitrrid φLLModKGrp
39 eqid BaseL=BaseL
40 eqid +L=+L
41 eqid L=L
42 eqid BaseG=BaseG
43 eqid +G=+G
44 eqid G=G
45 eqid 1G=1G
46 39 40 41 4 42 43 44 45 islmod LLModLGrpGRingqBaseGrBaseGzBaseLwBaseLrLwBaseLrLw+Lz=rLw+LrLzq+GrLw=qLw+LrLwqGrLw=qLrLw1GLw=w
47 46 simp2bi LLModGRing
48 5 6 8 9 ringpropd φFRingGRing
49 47 48 imbitrrid φLLModFRing
50 simplr φLLModxPyBLLMod
51 simprl φLLModxPyBxP
52 6 ad2antrr φLLModxPyBP=BaseG
53 51 52 eleqtrd φLLModxPyBxBaseG
54 simprr φLLModxPyByB
55 2 ad2antrr φLLModxPyBB=BaseL
56 54 55 eleqtrd φLLModxPyByBaseL
57 39 4 41 42 lmodvscl LLModxBaseGyBaseLxLyBaseL
58 50 53 56 57 syl3anc φLLModxPyBxLyBaseL
59 10 adantlr φLLModxPyBxKy=xLy
60 58 59 55 3eltr4d φLLModxPyBxKyB
61 60 ralrimivva φLLModxPyBxKyB
62 61 ex φLLModxPyBxKyB
63 38 49 62 3jcad φLLModKGrpFRingxPyBxKyB
64 37 adantr φKGrpFRingxPyBxKyBKGrpLGrp
65 48 adantr φKGrpFRingxPyBxKyBFRingGRing
66 simpll φKGrpFRingxPyBxKyBqPrPzBwBφ
67 simprlr φKGrpFRingxPyBxKyBqPrPzBwBrP
68 simprrr φKGrpFRingxPyBxKyBqPrPzBwBwB
69 10 oveqrspc2v φrPwBrKw=rLw
70 66 67 68 69 syl12anc φKGrpFRingxPyBxKyBqPrPzBwBrKw=rLw
71 70 eleq1d φKGrpFRingxPyBxKyBqPrPzBwBrKwBrLwB
72 simplr1 φKGrpFRingxPyBxKyBqPrPzBwBKGrp
73 1 ad2antrr φKGrpFRingxPyBxKyBqPrPzBwBB=BaseK
74 68 73 eleqtrd φKGrpFRingxPyBxKyBqPrPzBwBwBaseK
75 simprrl φKGrpFRingxPyBxKyBqPrPzBwBzB
76 75 73 eleqtrd φKGrpFRingxPyBxKyBqPrPzBwBzBaseK
77 13 14 grpcl KGrpwBaseKzBaseKw+KzBaseK
78 72 74 76 77 syl3anc φKGrpFRingxPyBxKyBqPrPzBwBw+KzBaseK
79 78 73 eleqtrrd φKGrpFRingxPyBxKyBqPrPzBwBw+KzB
80 10 oveqrspc2v φrPw+KzBrKw+Kz=rLw+Kz
81 66 67 79 80 syl12anc φKGrpFRingxPyBxKyBqPrPzBwBrKw+Kz=rLw+Kz
82 7 oveqrspc2v φwBzBw+Kz=w+Lz
83 66 68 75 82 syl12anc φKGrpFRingxPyBxKyBqPrPzBwBw+Kz=w+Lz
84 83 oveq2d φKGrpFRingxPyBxKyBqPrPzBwBrLw+Kz=rLw+Lz
85 81 84 eqtrd φKGrpFRingxPyBxKyBqPrPzBwBrKw+Kz=rLw+Lz
86 simplr3 φKGrpFRingxPyBxKyBqPrPzBwBxPyBxKyB
87 ovrspc2v rPwBxPyBxKyBrKwB
88 67 68 86 87 syl21anc φKGrpFRingxPyBxKyBqPrPzBwBrKwB
89 ovrspc2v rPzBxPyBxKyBrKzB
90 67 75 86 89 syl21anc φKGrpFRingxPyBxKyBqPrPzBwBrKzB
91 7 oveqrspc2v φrKwBrKzBrKw+KrKz=rKw+LrKz
92 66 88 90 91 syl12anc φKGrpFRingxPyBxKyBqPrPzBwBrKw+KrKz=rKw+LrKz
93 10 oveqrspc2v φrPzBrKz=rLz
94 66 67 75 93 syl12anc φKGrpFRingxPyBxKyBqPrPzBwBrKz=rLz
95 70 94 oveq12d φKGrpFRingxPyBxKyBqPrPzBwBrKw+LrKz=rLw+LrLz
96 92 95 eqtrd φKGrpFRingxPyBxKyBqPrPzBwBrKw+KrKz=rLw+LrLz
97 85 96 eqeq12d φKGrpFRingxPyBxKyBqPrPzBwBrKw+Kz=rKw+KrKzrLw+Lz=rLw+LrLz
98 simplr2 φKGrpFRingxPyBxKyBqPrPzBwBFRing
99 simprll φKGrpFRingxPyBxKyBqPrPzBwBqP
100 5 ad2antrr φKGrpFRingxPyBxKyBqPrPzBwBP=BaseF
101 99 100 eleqtrd φKGrpFRingxPyBxKyBqPrPzBwBqBaseF
102 67 100 eleqtrd φKGrpFRingxPyBxKyBqPrPzBwBrBaseF
103 16 17 ringacl FRingqBaseFrBaseFq+FrBaseF
104 98 101 102 103 syl3anc φKGrpFRingxPyBxKyBqPrPzBwBq+FrBaseF
105 104 100 eleqtrrd φKGrpFRingxPyBxKyBqPrPzBwBq+FrP
106 10 oveqrspc2v φq+FrPwBq+FrKw=q+FrLw
107 66 105 68 106 syl12anc φKGrpFRingxPyBxKyBqPrPzBwBq+FrKw=q+FrLw
108 8 oveqrspc2v φqPrPq+Fr=q+Gr
109 108 ad2ant2r φKGrpFRingxPyBxKyBqPrPzBwBq+Fr=q+Gr
110 109 oveq1d φKGrpFRingxPyBxKyBqPrPzBwBq+FrLw=q+GrLw
111 107 110 eqtrd φKGrpFRingxPyBxKyBqPrPzBwBq+FrKw=q+GrLw
112 ovrspc2v qPwBxPyBxKyBqKwB
113 99 68 86 112 syl21anc φKGrpFRingxPyBxKyBqPrPzBwBqKwB
114 7 oveqrspc2v φqKwBrKwBqKw+KrKw=qKw+LrKw
115 66 113 88 114 syl12anc φKGrpFRingxPyBxKyBqPrPzBwBqKw+KrKw=qKw+LrKw
116 10 oveqrspc2v φqPwBqKw=qLw
117 66 99 68 116 syl12anc φKGrpFRingxPyBxKyBqPrPzBwBqKw=qLw
118 117 70 oveq12d φKGrpFRingxPyBxKyBqPrPzBwBqKw+LrKw=qLw+LrLw
119 115 118 eqtrd φKGrpFRingxPyBxKyBqPrPzBwBqKw+KrKw=qLw+LrLw
120 111 119 eqeq12d φKGrpFRingxPyBxKyBqPrPzBwBq+FrKw=qKw+KrKwq+GrLw=qLw+LrLw
121 71 97 120 3anbi123d φKGrpFRingxPyBxKyBqPrPzBwBrKwBrKw+Kz=rKw+KrKzq+FrKw=qKw+KrKwrLwBrLw+Lz=rLw+LrLzq+GrLw=qLw+LrLw
122 16 18 ringcl FRingqBaseFrBaseFqFrBaseF
123 98 101 102 122 syl3anc φKGrpFRingxPyBxKyBqPrPzBwBqFrBaseF
124 123 100 eleqtrrd φKGrpFRingxPyBxKyBqPrPzBwBqFrP
125 10 oveqrspc2v φqFrPwBqFrKw=qFrLw
126 66 124 68 125 syl12anc φKGrpFRingxPyBxKyBqPrPzBwBqFrKw=qFrLw
127 9 oveqrspc2v φqPrPqFr=qGr
128 127 ad2ant2r φKGrpFRingxPyBxKyBqPrPzBwBqFr=qGr
129 128 oveq1d φKGrpFRingxPyBxKyBqPrPzBwBqFrLw=qGrLw
130 126 129 eqtrd φKGrpFRingxPyBxKyBqPrPzBwBqFrKw=qGrLw
131 10 oveqrspc2v φqPrKwBqKrKw=qLrKw
132 66 99 88 131 syl12anc φKGrpFRingxPyBxKyBqPrPzBwBqKrKw=qLrKw
133 70 oveq2d φKGrpFRingxPyBxKyBqPrPzBwBqLrKw=qLrLw
134 132 133 eqtrd φKGrpFRingxPyBxKyBqPrPzBwBqKrKw=qLrLw
135 130 134 eqeq12d φKGrpFRingxPyBxKyBqPrPzBwBqFrKw=qKrKwqGrLw=qLrLw
136 16 19 ringidcl FRing1FBaseF
137 98 136 syl φKGrpFRingxPyBxKyBqPrPzBwB1FBaseF
138 137 100 eleqtrrd φKGrpFRingxPyBxKyBqPrPzBwB1FP
139 10 oveqrspc2v φ1FPwB1FKw=1FLw
140 66 138 68 139 syl12anc φKGrpFRingxPyBxKyBqPrPzBwB1FKw=1FLw
141 5 6 9 rngidpropd φ1F=1G
142 141 ad2antrr φKGrpFRingxPyBxKyBqPrPzBwB1F=1G
143 142 oveq1d φKGrpFRingxPyBxKyBqPrPzBwB1FLw=1GLw
144 140 143 eqtrd φKGrpFRingxPyBxKyBqPrPzBwB1FKw=1GLw
145 144 eqeq1d φKGrpFRingxPyBxKyBqPrPzBwB1FKw=w1GLw=w
146 135 145 anbi12d φKGrpFRingxPyBxKyBqPrPzBwBqFrKw=qKrKw1FKw=wqGrLw=qLrLw1GLw=w
147 121 146 anbi12d φKGrpFRingxPyBxKyBqPrPzBwBrKwBrKw+Kz=rKw+KrKzq+FrKw=qKw+KrKwqFrKw=qKrKw1FKw=wrLwBrLw+Lz=rLw+LrLzq+GrLw=qLw+LrLwqGrLw=qLrLw1GLw=w
148 147 anassrs φKGrpFRingxPyBxKyBqPrPzBwBrKwBrKw+Kz=rKw+KrKzq+FrKw=qKw+KrKwqFrKw=qKrKw1FKw=wrLwBrLw+Lz=rLw+LrLzq+GrLw=qLw+LrLwqGrLw=qLrLw1GLw=w
149 148 2ralbidva φKGrpFRingxPyBxKyBqPrPzBwBrKwBrKw+Kz=rKw+KrKzq+FrKw=qKw+KrKwqFrKw=qKrKw1FKw=wzBwBrLwBrLw+Lz=rLw+LrLzq+GrLw=qLw+LrLwqGrLw=qLrLw1GLw=w
150 149 2ralbidva φKGrpFRingxPyBxKyBqPrPzBwBrKwBrKw+Kz=rKw+KrKzq+FrKw=qKw+KrKwqFrKw=qKrKw1FKw=wqPrPzBwBrLwBrLw+Lz=rLw+LrLzq+GrLw=qLw+LrLwqGrLw=qLrLw1GLw=w
151 5 adantr φKGrpFRingxPyBxKyBP=BaseF
152 1 adantr φKGrpFRingxPyBxKyBB=BaseK
153 152 eleq2d φKGrpFRingxPyBxKyBrKwBrKwBaseK
154 153 3anbi1d φKGrpFRingxPyBxKyBrKwBrKw+Kz=rKw+KrKzq+FrKw=qKw+KrKwrKwBaseKrKw+Kz=rKw+KrKzq+FrKw=qKw+KrKw
155 154 anbi1d φKGrpFRingxPyBxKyBrKwBrKw+Kz=rKw+KrKzq+FrKw=qKw+KrKwqFrKw=qKrKw1FKw=wrKwBaseKrKw+Kz=rKw+KrKzq+FrKw=qKw+KrKwqFrKw=qKrKw1FKw=w
156 152 155 raleqbidv φKGrpFRingxPyBxKyBwBrKwBrKw+Kz=rKw+KrKzq+FrKw=qKw+KrKwqFrKw=qKrKw1FKw=wwBaseKrKwBaseKrKw+Kz=rKw+KrKzq+FrKw=qKw+KrKwqFrKw=qKrKw1FKw=w
157 152 156 raleqbidv φKGrpFRingxPyBxKyBzBwBrKwBrKw+Kz=rKw+KrKzq+FrKw=qKw+KrKwqFrKw=qKrKw1FKw=wzBaseKwBaseKrKwBaseKrKw+Kz=rKw+KrKzq+FrKw=qKw+KrKwqFrKw=qKrKw1FKw=w
158 151 157 raleqbidv φKGrpFRingxPyBxKyBrPzBwBrKwBrKw+Kz=rKw+KrKzq+FrKw=qKw+KrKwqFrKw=qKrKw1FKw=wrBaseFzBaseKwBaseKrKwBaseKrKw+Kz=rKw+KrKzq+FrKw=qKw+KrKwqFrKw=qKrKw1FKw=w
159 151 158 raleqbidv φKGrpFRingxPyBxKyBqPrPzBwBrKwBrKw+Kz=rKw+KrKzq+FrKw=qKw+KrKwqFrKw=qKrKw1FKw=wqBaseFrBaseFzBaseKwBaseKrKwBaseKrKw+Kz=rKw+KrKzq+FrKw=qKw+KrKwqFrKw=qKrKw1FKw=w
160 6 adantr φKGrpFRingxPyBxKyBP=BaseG
161 2 adantr φKGrpFRingxPyBxKyBB=BaseL
162 161 eleq2d φKGrpFRingxPyBxKyBrLwBrLwBaseL
163 162 3anbi1d φKGrpFRingxPyBxKyBrLwBrLw+Lz=rLw+LrLzq+GrLw=qLw+LrLwrLwBaseLrLw+Lz=rLw+LrLzq+GrLw=qLw+LrLw
164 163 anbi1d φKGrpFRingxPyBxKyBrLwBrLw+Lz=rLw+LrLzq+GrLw=qLw+LrLwqGrLw=qLrLw1GLw=wrLwBaseLrLw+Lz=rLw+LrLzq+GrLw=qLw+LrLwqGrLw=qLrLw1GLw=w
165 161 164 raleqbidv φKGrpFRingxPyBxKyBwBrLwBrLw+Lz=rLw+LrLzq+GrLw=qLw+LrLwqGrLw=qLrLw1GLw=wwBaseLrLwBaseLrLw+Lz=rLw+LrLzq+GrLw=qLw+LrLwqGrLw=qLrLw1GLw=w
166 161 165 raleqbidv φKGrpFRingxPyBxKyBzBwBrLwBrLw+Lz=rLw+LrLzq+GrLw=qLw+LrLwqGrLw=qLrLw1GLw=wzBaseLwBaseLrLwBaseLrLw+Lz=rLw+LrLzq+GrLw=qLw+LrLwqGrLw=qLrLw1GLw=w
167 160 166 raleqbidv φKGrpFRingxPyBxKyBrPzBwBrLwBrLw+Lz=rLw+LrLzq+GrLw=qLw+LrLwqGrLw=qLrLw1GLw=wrBaseGzBaseLwBaseLrLwBaseLrLw+Lz=rLw+LrLzq+GrLw=qLw+LrLwqGrLw=qLrLw1GLw=w
168 160 167 raleqbidv φKGrpFRingxPyBxKyBqPrPzBwBrLwBrLw+Lz=rLw+LrLzq+GrLw=qLw+LrLwqGrLw=qLrLw1GLw=wqBaseGrBaseGzBaseLwBaseLrLwBaseLrLw+Lz=rLw+LrLzq+GrLw=qLw+LrLwqGrLw=qLrLw1GLw=w
169 150 159 168 3bitr3d φKGrpFRingxPyBxKyBqBaseFrBaseFzBaseKwBaseKrKwBaseKrKw+Kz=rKw+KrKzq+FrKw=qKw+KrKwqFrKw=qKrKw1FKw=wqBaseGrBaseGzBaseLwBaseLrLwBaseLrLw+Lz=rLw+LrLzq+GrLw=qLw+LrLwqGrLw=qLrLw1GLw=w
170 64 65 169 3anbi123d φKGrpFRingxPyBxKyBKGrpFRingqBaseFrBaseFzBaseKwBaseKrKwBaseKrKw+Kz=rKw+KrKzq+FrKw=qKw+KrKwqFrKw=qKrKw1FKw=wLGrpGRingqBaseGrBaseGzBaseLwBaseLrLwBaseLrLw+Lz=rLw+LrLzq+GrLw=qLw+LrLwqGrLw=qLrLw1GLw=w
171 170 20 46 3bitr4g φKGrpFRingxPyBxKyBKLModLLMod
172 171 ex φKGrpFRingxPyBxKyBKLModLLMod
173 35 63 172 pm5.21ndd φKLModLLMod