Metamath Proof Explorer


Theorem lsatcvat3

Description: A condition implying that a certain subspace is an atom. Part of Lemma 3.2.20 of PtakPulmannova p. 68. ( atcvat3i analog.) (Contributed by NM, 11-Jan-2015)

Ref Expression
Hypotheses lsatcvat3.s S = LSubSp W
lsatcvat3.p ˙ = LSSum W
lsatcvat3.a A = LSAtoms W
lsatcvat3.w φ W LVec
lsatcvat3.u φ U S
lsatcvat3.q φ Q A
lsatcvat3.r φ R A
lsatcvat3.n φ Q R
lsatcvat3.m φ ¬ R U
lsatcvat3.l φ Q U ˙ R
Assertion lsatcvat3 φ U Q ˙ R A

Proof

Step Hyp Ref Expression
1 lsatcvat3.s S = LSubSp W
2 lsatcvat3.p ˙ = LSSum W
3 lsatcvat3.a A = LSAtoms W
4 lsatcvat3.w φ W LVec
5 lsatcvat3.u φ U S
6 lsatcvat3.q φ Q A
7 lsatcvat3.r φ R A
8 lsatcvat3.n φ Q R
9 lsatcvat3.m φ ¬ R U
10 lsatcvat3.l φ Q U ˙ R
11 eqid L W = L W
12 lveclmod W LVec W LMod
13 4 12 syl φ W LMod
14 1 3 13 6 lsatlssel φ Q S
15 1 3 13 7 lsatlssel φ R S
16 1 2 lsmcl W LMod Q S R S Q ˙ R S
17 13 14 15 16 syl3anc φ Q ˙ R S
18 1 lssincl W LMod U S Q ˙ R S U Q ˙ R S
19 13 5 17 18 syl3anc φ U Q ˙ R S
20 1 2 3 11 4 5 7 lcv1 φ ¬ R U U L W U ˙ R
21 9 20 mpbid φ U L W U ˙ R
22 lmodabl W LMod W Abel
23 13 22 syl φ W Abel
24 1 lsssssubg W LMod S SubGrp W
25 13 24 syl φ S SubGrp W
26 25 14 sseldd φ Q SubGrp W
27 25 15 sseldd φ R SubGrp W
28 2 lsmcom W Abel Q SubGrp W R SubGrp W Q ˙ R = R ˙ Q
29 23 26 27 28 syl3anc φ Q ˙ R = R ˙ Q
30 29 oveq2d φ U ˙ Q ˙ R = U ˙ R ˙ Q
31 25 5 sseldd φ U SubGrp W
32 2 lsmass U SubGrp W R SubGrp W Q SubGrp W U ˙ R ˙ Q = U ˙ R ˙ Q
33 31 27 26 32 syl3anc φ U ˙ R ˙ Q = U ˙ R ˙ Q
34 30 33 eqtr4d φ U ˙ Q ˙ R = U ˙ R ˙ Q
35 1 2 lsmcl W LMod U S R S U ˙ R S
36 13 5 15 35 syl3anc φ U ˙ R S
37 25 36 sseldd φ U ˙ R SubGrp W
38 2 lsmless2 U ˙ R SubGrp W U ˙ R SubGrp W Q U ˙ R U ˙ R ˙ Q U ˙ R ˙ U ˙ R
39 37 37 10 38 syl3anc φ U ˙ R ˙ Q U ˙ R ˙ U ˙ R
40 34 39 eqsstrd φ U ˙ Q ˙ R U ˙ R ˙ U ˙ R
41 2 lsmidm U ˙ R SubGrp W U ˙ R ˙ U ˙ R = U ˙ R
42 37 41 syl φ U ˙ R ˙ U ˙ R = U ˙ R
43 40 42 sseqtrd φ U ˙ Q ˙ R U ˙ R
44 25 17 sseldd φ Q ˙ R SubGrp W
45 2 lsmub2 Q SubGrp W R SubGrp W R Q ˙ R
46 26 27 45 syl2anc φ R Q ˙ R
47 2 lsmless2 U SubGrp W Q ˙ R SubGrp W R Q ˙ R U ˙ R U ˙ Q ˙ R
48 31 44 46 47 syl3anc φ U ˙ R U ˙ Q ˙ R
49 43 48 eqssd φ U ˙ Q ˙ R = U ˙ R
50 21 49 breqtrrd φ U L W U ˙ Q ˙ R
51 1 2 11 13 5 17 50 lcvexchlem4 φ U Q ˙ R L W Q ˙ R
52 1 2 3 11 4 19 6 7 8 51 lsatcvat2 φ U Q ˙ R A