Metamath Proof Explorer


Theorem lshpkrlem5

Description: Lemma for lshpkrex . Part of showing linearity of G . (Contributed by NM, 16-Jul-2014)

Ref Expression
Hypotheses lshpkrlem.v V=BaseW
lshpkrlem.a +˙=+W
lshpkrlem.n N=LSpanW
lshpkrlem.p ˙=LSSumW
lshpkrlem.h H=LSHypW
lshpkrlem.w φWLVec
lshpkrlem.u φUH
lshpkrlem.z φZV
lshpkrlem.x φXV
lshpkrlem.e φU˙NZ=V
lshpkrlem.d D=ScalarW
lshpkrlem.k K=BaseD
lshpkrlem.t ·˙=W
lshpkrlem.o 0˙=0D
lshpkrlem.g G=xVιkK|yUx=y+˙k·˙Z
Assertion lshpkrlem5 φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZGl·˙u+˙v=lDGu+DGv

Proof

Step Hyp Ref Expression
1 lshpkrlem.v V=BaseW
2 lshpkrlem.a +˙=+W
3 lshpkrlem.n N=LSpanW
4 lshpkrlem.p ˙=LSSumW
5 lshpkrlem.h H=LSHypW
6 lshpkrlem.w φWLVec
7 lshpkrlem.u φUH
8 lshpkrlem.z φZV
9 lshpkrlem.x φXV
10 lshpkrlem.e φU˙NZ=V
11 lshpkrlem.d D=ScalarW
12 lshpkrlem.k K=BaseD
13 lshpkrlem.t ·˙=W
14 lshpkrlem.o 0˙=0D
15 lshpkrlem.g G=xVιkK|yUx=y+˙k·˙Z
16 eqid 0W=0W
17 eqid CntzW=CntzW
18 simp11 φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙Zφ
19 18 6 syl φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZWLVec
20 lveclmod WLVecWLMod
21 19 20 syl φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZWLMod
22 eqid LSubSpW=LSubSpW
23 22 lsssssubg WLModLSubSpWSubGrpW
24 21 23 syl φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZLSubSpWSubGrpW
25 6 20 syl φWLMod
26 22 5 25 7 lshplss φULSubSpW
27 18 26 syl φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZULSubSpW
28 24 27 sseldd φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZUSubGrpW
29 18 8 syl φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZZV
30 1 22 3 lspsncl WLModZVNZLSubSpW
31 21 29 30 syl2anc φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZNZLSubSpW
32 24 31 sseldd φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZNZSubGrpW
33 1 16 3 4 5 6 7 8 10 lshpdisj φUNZ=0W
34 18 33 syl φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZUNZ=0W
35 lmodabl WLModWAbel
36 21 35 syl φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZWAbel
37 17 36 28 32 ablcntzd φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZUCntzWNZ
38 simp23r φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZzU
39 simp12 φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZlK
40 simp22 φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZrU
41 11 13 12 22 lssvscl WLModULSubSpWlKrUl·˙rU
42 21 27 39 40 41 syl22anc φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙Zl·˙rU
43 simp23l φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZsU
44 2 22 lssvacl WLModULSubSpWl·˙rUsUl·˙r+˙sU
45 21 27 42 43 44 syl22anc φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙Zl·˙r+˙sU
46 simp13 φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZuV
47 1 11 13 12 lmodvscl WLModlKuVl·˙uV
48 21 39 46 47 syl3anc φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙Zl·˙uV
49 simp21 φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZvV
50 1 2 lmodvacl WLModl·˙uVvVl·˙u+˙vV
51 21 48 49 50 syl3anc φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙Zl·˙u+˙vV
52 6 adantr φl·˙u+˙vVWLVec
53 7 adantr φl·˙u+˙vVUH
54 8 adantr φl·˙u+˙vVZV
55 simpr φl·˙u+˙vVl·˙u+˙vV
56 10 adantr φl·˙u+˙vVU˙NZ=V
57 1 2 3 4 5 52 53 54 55 56 11 12 13 14 15 lshpkrlem2 φl·˙u+˙vVGl·˙u+˙vK
58 18 51 57 syl2anc φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZGl·˙u+˙vK
59 1 13 11 12 3 21 58 29 lspsneli φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZGl·˙u+˙v·˙ZNZ
60 6 adantr φuVWLVec
61 7 adantr φuVUH
62 8 adantr φuVZV
63 simpr φuVuV
64 10 adantr φuVU˙NZ=V
65 1 2 3 4 5 60 61 62 63 64 11 12 13 14 15 lshpkrlem2 φuVGuK
66 18 46 65 syl2anc φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZGuK
67 eqid D=D
68 11 12 67 lmodmcl WLModlKGuKlDGuK
69 21 39 66 68 syl3anc φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZlDGuK
70 6 adantr φvVWLVec
71 7 adantr φvVUH
72 8 adantr φvVZV
73 simpr φvVvV
74 10 adantr φvVU˙NZ=V
75 1 2 3 4 5 70 71 72 73 74 11 12 13 14 15 lshpkrlem2 φvVGvK
76 18 49 75 syl2anc φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZGvK
77 eqid +D=+D
78 11 12 77 lmodacl WLModlDGuKGvKlDGu+DGvK
79 21 69 76 78 syl3anc φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZlDGu+DGvK
80 1 13 11 12 3 21 79 29 lspsneli φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZlDGu+DGv·˙ZNZ
81 simp33 φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙Z
82 simp1 φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZφlKuV
83 1 22 lssel ULSubSpWrUrV
84 27 40 83 syl2anc φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZrV
85 1 22 lssel ULSubSpWsUsV
86 27 43 85 syl2anc φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZsV
87 simp31 φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙Zu=r+˙Gu·˙Z
88 simp32 φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙Zv=s+˙Gv·˙Z
89 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 lshpkrlem4 φlKuVvVrVsVu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=l·˙r+˙s+˙lDGu+DGv·˙Z
90 82 49 84 86 87 88 89 syl132anc φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙Zl·˙u+˙v=l·˙r+˙s+˙lDGu+DGv·˙Z
91 81 90 eqtr3d φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙Zz+˙Gl·˙u+˙v·˙Z=l·˙r+˙s+˙lDGu+DGv·˙Z
92 2 16 17 28 32 34 37 38 45 59 80 91 subgdisj2 φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZGl·˙u+˙v·˙Z=lDGu+DGv·˙Z
93 1 3 4 5 16 25 7 8 10 lshpne0 φZ0W
94 18 93 syl φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZZ0W
95 1 13 11 12 16 19 58 79 29 94 lvecvscan2 φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZGl·˙u+˙v·˙Z=lDGu+DGv·˙ZGl·˙u+˙v=lDGu+DGv
96 92 95 mpbid φlKuVvVrUsUzUu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=z+˙Gl·˙u+˙v·˙ZGl·˙u+˙v=lDGu+DGv