Metamath Proof Explorer


Theorem ltflcei

Description: Theorem to move the floor function across a strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017)

Ref Expression
Assertion ltflcei A B A < B A < B

Proof

Step Hyp Ref Expression
1 flltp1 A A < A + 1
2 1 ad3antrrr A B A < B B A A < A + 1
3 renegcl B B
4 flval B B = ι x | x B B < x + 1
5 3 4 syl B B = ι x | x B B < x + 1
6 5 ad3antlr A B A < B B A B = ι x | x B B < x + 1
7 fllep1 A A A + 1
8 7 adantl B A A A + 1
9 reflcl A A
10 peano2re A A + 1
11 9 10 syl A A + 1
12 11 adantl B A A + 1
13 letr B A A + 1 B A A A + 1 B A + 1
14 12 13 mpd3an3 B A B A A A + 1 B A + 1
15 8 14 mpan2d B A B A B A + 1
16 leneg B A + 1 B A + 1 A + 1 B
17 11 16 sylan2 B A B A + 1 A + 1 B
18 15 17 sylibd B A B A A + 1 B
19 18 ancoms A B B A A + 1 B
20 ltneg A B A < B B < A
21 9 20 sylan A B A < B B < A
22 9 recnd A A
23 ax-1cn 1
24 negdi2 A 1 A + 1 = - A - 1
25 24 oveq1d A 1 - A + 1 + 1 = A - 1 + 1
26 negcl A A
27 npcan A 1 A - 1 + 1 = A
28 26 27 sylan A 1 A - 1 + 1 = A
29 25 28 eqtr2d A 1 A = - A + 1 + 1
30 22 23 29 sylancl A A = - A + 1 + 1
31 30 breq2d A B < A B < - A + 1 + 1
32 31 adantr A B B < A B < - A + 1 + 1
33 21 32 bitrd A B A < B B < - A + 1 + 1
34 33 biimpd A B A < B B < - A + 1 + 1
35 19 34 anim12d A B B A A < B A + 1 B B < - A + 1 + 1
36 35 ancomsd A B A < B B A A + 1 B B < - A + 1 + 1
37 36 impl A B A < B B A A + 1 B B < - A + 1 + 1
38 flcl A A
39 38 peano2zd A A + 1
40 39 znegcld A A + 1
41 rebtwnz B ∃! x x B B < x + 1
42 3 41 syl B ∃! x x B B < x + 1
43 breq1 x = A + 1 x B A + 1 B
44 oveq1 x = A + 1 x + 1 = - A + 1 + 1
45 44 breq2d x = A + 1 B < x + 1 B < - A + 1 + 1
46 43 45 anbi12d x = A + 1 x B B < x + 1 A + 1 B B < - A + 1 + 1
47 46 riota2 A + 1 ∃! x x B B < x + 1 A + 1 B B < - A + 1 + 1 ι x | x B B < x + 1 = A + 1
48 40 42 47 syl2an A B A + 1 B B < - A + 1 + 1 ι x | x B B < x + 1 = A + 1
49 48 ad2antrr A B A < B B A A + 1 B B < - A + 1 + 1 ι x | x B B < x + 1 = A + 1
50 37 49 mpbid A B A < B B A ι x | x B B < x + 1 = A + 1
51 6 50 eqtrd A B A < B B A B = A + 1
52 38 zcnd A A
53 peano2cn A A + 1
54 52 53 syl A A + 1
55 3 flcld B B
56 55 zcnd B B
57 negcon2 A + 1 B A + 1 = B B = A + 1
58 54 56 57 syl2an A B A + 1 = B B = A + 1
59 58 ad2antrr A B A < B B A A + 1 = B B = A + 1
60 51 59 mpbird A B A < B B A A + 1 = B
61 2 60 breqtrd A B A < B B A A < B
62 61 ex A B A < B B A A < B
63 ltnle A B A < B ¬ B A
64 ceige B B B
65 64 adantl A B B B
66 ceicl B B
67 66 zred B B
68 67 adantl A B B
69 ltletr A B B A < B B B A < B
70 68 69 mpd3an3 A B A < B B B A < B
71 65 70 mpan2d A B A < B A < B
72 63 71 sylbird A B ¬ B A A < B
73 72 adantr A B A < B ¬ B A A < B
74 62 73 pm2.61d A B A < B A < B
75 flval A A = ι x | x A A < x + 1
76 75 ad3antrrr A B A < B B A A = ι x | x A A < x + 1
77 ceim1l B - B - 1 < B
78 77 adantl A B - B - 1 < B
79 peano2rem B - B - 1
80 67 79 syl B - B - 1
81 80 adantl A B - B - 1
82 ltleletr - B - 1 B A - B - 1 < B B A - B - 1 A
83 82 3com13 A B - B - 1 - B - 1 < B B A - B - 1 A
84 81 83 mpd3an3 A B - B - 1 < B B A - B - 1 A
85 78 84 mpand A B B A - B - 1 A
86 66 zcnd B B
87 npcan B 1 B - 1 + 1 = B
88 86 23 87 sylancl B B - 1 + 1 = B
89 88 breq2d B A < B - 1 + 1 A < B
90 89 biimprd B A < B A < B - 1 + 1
91 90 adantl A B A < B A < B - 1 + 1
92 85 91 anim12d A B B A A < B - B - 1 A A < B - 1 + 1
93 92 ancomsd A B A < B B A - B - 1 A A < B - 1 + 1
94 93 impl A B A < B B A - B - 1 A A < B - 1 + 1
95 peano2zm B - B - 1
96 66 95 syl B - B - 1
97 rebtwnz A ∃! x x A A < x + 1
98 breq1 x = - B - 1 x A - B - 1 A
99 oveq1 x = - B - 1 x + 1 = B - 1 + 1
100 99 breq2d x = - B - 1 A < x + 1 A < B - 1 + 1
101 98 100 anbi12d x = - B - 1 x A A < x + 1 - B - 1 A A < B - 1 + 1
102 101 riota2 - B - 1 ∃! x x A A < x + 1 - B - 1 A A < B - 1 + 1 ι x | x A A < x + 1 = - B - 1
103 96 97 102 syl2anr A B - B - 1 A A < B - 1 + 1 ι x | x A A < x + 1 = - B - 1
104 103 ad2antrr A B A < B B A - B - 1 A A < B - 1 + 1 ι x | x A A < x + 1 = - B - 1
105 94 104 mpbid A B A < B B A ι x | x A A < x + 1 = - B - 1
106 76 105 eqtrd A B A < B B A A = - B - 1
107 77 ad3antlr A B A < B B A - B - 1 < B
108 106 107 eqbrtrd A B A < B B A A < B
109 108 ex A B A < B B A A < B
110 flle A A A
111 110 adantr A B A A
112 9 adantr A B A
113 lelttr A A B A A A < B A < B
114 113 3coml A B A A A A < B A < B
115 112 114 mpd3an3 A B A A A < B A < B
116 111 115 mpand A B A < B A < B
117 63 116 sylbird A B ¬ B A A < B
118 117 adantr A B A < B ¬ B A A < B
119 109 118 pm2.61d A B A < B A < B
120 74 119 impbida A B A < B A < B