Metamath Proof Explorer


Theorem ltflcei

Description: Theorem to move the floor function across a strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017)

Ref Expression
Assertion ltflcei ABA<BA<B

Proof

Step Hyp Ref Expression
1 flltp1 AA<A+1
2 1 ad3antrrr ABA<BBAA<A+1
3 renegcl BB
4 flval BB=ιx|xBB<x+1
5 3 4 syl BB=ιx|xBB<x+1
6 5 ad3antlr ABA<BBAB=ιx|xBB<x+1
7 fllep1 AAA+1
8 7 adantl BAAA+1
9 reflcl AA
10 peano2re AA+1
11 9 10 syl AA+1
12 11 adantl BAA+1
13 letr BAA+1BAAA+1BA+1
14 12 13 mpd3an3 BABAAA+1BA+1
15 8 14 mpan2d BABABA+1
16 leneg BA+1BA+1A+1B
17 11 16 sylan2 BABA+1A+1B
18 15 17 sylibd BABAA+1B
19 18 ancoms ABBAA+1B
20 ltneg ABA<BB<A
21 9 20 sylan ABA<BB<A
22 9 recnd AA
23 ax-1cn 1
24 negdi2 A1A+1=-A-1
25 24 oveq1d A1-A+1+1=A-1+1
26 negcl AA
27 npcan A1A-1+1=A
28 26 27 sylan A1A-1+1=A
29 25 28 eqtr2d A1A=-A+1+1
30 22 23 29 sylancl AA=-A+1+1
31 30 breq2d AB<AB<-A+1+1
32 31 adantr ABB<AB<-A+1+1
33 21 32 bitrd ABA<BB<-A+1+1
34 33 biimpd ABA<BB<-A+1+1
35 19 34 anim12d ABBAA<BA+1BB<-A+1+1
36 35 ancomsd ABA<BBAA+1BB<-A+1+1
37 36 impl ABA<BBAA+1BB<-A+1+1
38 flcl AA
39 38 peano2zd AA+1
40 39 znegcld AA+1
41 rebtwnz B∃!xxBB<x+1
42 3 41 syl B∃!xxBB<x+1
43 breq1 x=A+1xBA+1B
44 oveq1 x=A+1x+1=-A+1+1
45 44 breq2d x=A+1B<x+1B<-A+1+1
46 43 45 anbi12d x=A+1xBB<x+1A+1BB<-A+1+1
47 46 riota2 A+1∃!xxBB<x+1A+1BB<-A+1+1ιx|xBB<x+1=A+1
48 40 42 47 syl2an ABA+1BB<-A+1+1ιx|xBB<x+1=A+1
49 48 ad2antrr ABA<BBAA+1BB<-A+1+1ιx|xBB<x+1=A+1
50 37 49 mpbid ABA<BBAιx|xBB<x+1=A+1
51 6 50 eqtrd ABA<BBAB=A+1
52 38 zcnd AA
53 peano2cn AA+1
54 52 53 syl AA+1
55 3 flcld BB
56 55 zcnd BB
57 negcon2 A+1BA+1=BB=A+1
58 54 56 57 syl2an ABA+1=BB=A+1
59 58 ad2antrr ABA<BBAA+1=BB=A+1
60 51 59 mpbird ABA<BBAA+1=B
61 2 60 breqtrd ABA<BBAA<B
62 61 ex ABA<BBAA<B
63 ltnle ABA<B¬BA
64 ceige BBB
65 64 adantl ABBB
66 ceicl BB
67 66 zred BB
68 67 adantl ABB
69 ltletr ABBA<BBBA<B
70 68 69 mpd3an3 ABA<BBBA<B
71 65 70 mpan2d ABA<BA<B
72 63 71 sylbird AB¬BAA<B
73 72 adantr ABA<B¬BAA<B
74 62 73 pm2.61d ABA<BA<B
75 flval AA=ιx|xAA<x+1
76 75 ad3antrrr ABA<BBAA=ιx|xAA<x+1
77 ceim1l B-B-1<B
78 77 adantl AB-B-1<B
79 peano2rem B-B-1
80 67 79 syl B-B-1
81 80 adantl AB-B-1
82 ltleletr -B-1BA-B-1<BBA-B-1A
83 82 3com13 AB-B-1-B-1<BBA-B-1A
84 81 83 mpd3an3 AB-B-1<BBA-B-1A
85 78 84 mpand ABBA-B-1A
86 66 zcnd BB
87 npcan B1B-1+1=B
88 86 23 87 sylancl BB-1+1=B
89 88 breq2d BA<B-1+1A<B
90 89 biimprd BA<BA<B-1+1
91 90 adantl ABA<BA<B-1+1
92 85 91 anim12d ABBAA<B-B-1AA<B-1+1
93 92 ancomsd ABA<BBA-B-1AA<B-1+1
94 93 impl ABA<BBA-B-1AA<B-1+1
95 peano2zm B-B-1
96 66 95 syl B-B-1
97 rebtwnz A∃!xxAA<x+1
98 breq1 x=-B-1xA-B-1A
99 oveq1 x=-B-1x+1=B-1+1
100 99 breq2d x=-B-1A<x+1A<B-1+1
101 98 100 anbi12d x=-B-1xAA<x+1-B-1AA<B-1+1
102 101 riota2 -B-1∃!xxAA<x+1-B-1AA<B-1+1ιx|xAA<x+1=-B-1
103 96 97 102 syl2anr AB-B-1AA<B-1+1ιx|xAA<x+1=-B-1
104 103 ad2antrr ABA<BBA-B-1AA<B-1+1ιx|xAA<x+1=-B-1
105 94 104 mpbid ABA<BBAιx|xAA<x+1=-B-1
106 76 105 eqtrd ABA<BBAA=-B-1
107 77 ad3antlr ABA<BBA-B-1<B
108 106 107 eqbrtrd ABA<BBAA<B
109 108 ex ABA<BBAA<B
110 flle AAA
111 110 adantr ABAA
112 9 adantr ABA
113 lelttr AABAAA<BA<B
114 113 3coml ABAAAA<BA<B
115 112 114 mpd3an3 ABAAA<BA<B
116 111 115 mpand ABA<BA<B
117 63 116 sylbird AB¬BAA<B
118 117 adantr ABA<B¬BAA<B
119 109 118 pm2.61d ABA<BA<B
120 74 119 impbida ABA<BA<B