| Step | Hyp | Ref | Expression | 
						
							| 1 |  | m1pmeq.p |  | 
						
							| 2 |  | m1pmeq.m |  | 
						
							| 3 |  | m1pmeq.u |  | 
						
							| 4 |  | m1pmeq.t |  | 
						
							| 5 |  | m1pmeq.r |  | 
						
							| 6 |  | m1pmeq.f |  | 
						
							| 7 |  | m1pmeq.g |  | 
						
							| 8 |  | m1pmeq.h |  | 
						
							| 9 |  | m1pmeq.1 |  | 
						
							| 10 | 5 | flddrngd |  | 
						
							| 11 | 10 | drngringd |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 12 3 | unitcl |  | 
						
							| 14 | 8 13 | syl |  | 
						
							| 15 | 8 3 | eleqtrdi |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 1 16 17 18 5 19 14 | ply1unit |  | 
						
							| 21 | 15 20 | mpbid |  | 
						
							| 22 |  | 0le0 |  | 
						
							| 23 | 21 22 | eqbrtrdi |  | 
						
							| 24 | 19 1 12 16 | deg1le0 |  | 
						
							| 25 | 24 | biimpa |  | 
						
							| 26 | 11 14 23 25 | syl21anc |  | 
						
							| 27 |  | eqid |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 | 21 | fveq2d |  | 
						
							| 30 |  | 0nn0 |  | 
						
							| 31 | 21 30 | eqeltrdi |  | 
						
							| 32 |  | eqid |  | 
						
							| 33 | 32 12 1 17 | coe1fvalcl |  | 
						
							| 34 | 14 31 33 | syl2anc |  | 
						
							| 35 | 29 34 | eqeltrrd |  | 
						
							| 36 | 17 27 28 11 35 | ringridmd |  | 
						
							| 37 | 9 | fveq2d |  | 
						
							| 38 | 9 | fveq2d |  | 
						
							| 39 |  | eqid |  | 
						
							| 40 |  | eqid |  | 
						
							| 41 |  | drngnzr |  | 
						
							| 42 | 10 41 | syl |  | 
						
							| 43 | 1 | ply1nz |  | 
						
							| 44 | 42 43 | syl |  | 
						
							| 45 | 3 40 44 8 | unitnz |  | 
						
							| 46 |  | fldidom |  | 
						
							| 47 | 5 46 | syl |  | 
						
							| 48 | 47 | idomdomd |  | 
						
							| 49 | 19 1 18 12 40 11 14 23 | deg1le0eq0 |  | 
						
							| 50 | 49 | necon3bid |  | 
						
							| 51 | 45 50 | mpbid |  | 
						
							| 52 | 29 51 | eqnetrd |  | 
						
							| 53 | 17 39 18 | domnrrg |  | 
						
							| 54 | 48 34 52 53 | syl3anc |  | 
						
							| 55 | 1 12 2 | mon1pcl |  | 
						
							| 56 | 7 55 | syl |  | 
						
							| 57 | 1 40 2 | mon1pn0 |  | 
						
							| 58 | 7 57 | syl |  | 
						
							| 59 | 19 1 39 12 4 40 11 14 45 54 56 58 | deg1mul2 |  | 
						
							| 60 | 38 59 | eqtrd |  | 
						
							| 61 | 37 60 | fveq12d |  | 
						
							| 62 | 19 28 2 | mon1pldg |  | 
						
							| 63 | 6 62 | syl |  | 
						
							| 64 | 1 4 27 12 19 40 11 14 45 56 58 | coe1mul4 |  | 
						
							| 65 | 19 28 2 | mon1pldg |  | 
						
							| 66 | 7 65 | syl |  | 
						
							| 67 | 29 66 | oveq12d |  | 
						
							| 68 | 64 67 | eqtrd |  | 
						
							| 69 | 61 63 68 | 3eqtr3rd |  | 
						
							| 70 | 36 69 | eqtr3d |  | 
						
							| 71 | 70 | fveq2d |  | 
						
							| 72 |  | eqid |  | 
						
							| 73 | 1 16 28 72 11 | ply1ascl1 |  | 
						
							| 74 | 26 71 73 | 3eqtrd |  | 
						
							| 75 | 74 | oveq1d |  | 
						
							| 76 | 1 | ply1ring |  | 
						
							| 77 | 11 76 | syl |  | 
						
							| 78 | 12 4 72 77 56 | ringlidmd |  | 
						
							| 79 | 9 75 78 | 3eqtrd |  |