Metamath Proof Explorer


Theorem mapdpglem3

Description: Lemma for mapdpg . Baer p. 45, line 3: "infer ... the existence of a number g in G and of an element z in (Fy)* such that t = gx'-z." (We scope $d g w z ph locally to avoid clashes with later substitutions into ph .) (Contributed by NM, 18-Mar-2015)

Ref Expression
Hypotheses mapdpglem.h H = LHyp K
mapdpglem.m M = mapd K W
mapdpglem.u U = DVecH K W
mapdpglem.v V = Base U
mapdpglem.s - ˙ = - U
mapdpglem.n N = LSpan U
mapdpglem.c C = LCDual K W
mapdpglem.k φ K HL W H
mapdpglem.x φ X V
mapdpglem.y φ Y V
mapdpglem1.p ˙ = LSSum C
mapdpglem2.j J = LSpan C
mapdpglem3.f F = Base C
mapdpglem3.te φ t M N X ˙ M N Y
mapdpglem3.a A = Scalar U
mapdpglem3.b B = Base A
mapdpglem3.t · ˙ = C
mapdpglem3.r R = - C
mapdpglem3.g φ G F
mapdpglem3.e φ M N X = J G
Assertion mapdpglem3 φ g B z M N Y t = g · ˙ G R z

Proof

Step Hyp Ref Expression
1 mapdpglem.h H = LHyp K
2 mapdpglem.m M = mapd K W
3 mapdpglem.u U = DVecH K W
4 mapdpglem.v V = Base U
5 mapdpglem.s - ˙ = - U
6 mapdpglem.n N = LSpan U
7 mapdpglem.c C = LCDual K W
8 mapdpglem.k φ K HL W H
9 mapdpglem.x φ X V
10 mapdpglem.y φ Y V
11 mapdpglem1.p ˙ = LSSum C
12 mapdpglem2.j J = LSpan C
13 mapdpglem3.f F = Base C
14 mapdpglem3.te φ t M N X ˙ M N Y
15 mapdpglem3.a A = Scalar U
16 mapdpglem3.b B = Base A
17 mapdpglem3.t · ˙ = C
18 mapdpglem3.r R = - C
19 mapdpglem3.g φ G F
20 mapdpglem3.e φ M N X = J G
21 20 oveq1d φ M N X ˙ M N Y = J G ˙ M N Y
22 14 21 eleqtrd φ t J G ˙ M N Y
23 r19.41v g B w = g · ˙ G z M N Y t = w R z g B w = g · ˙ G z M N Y t = w R z
24 1 7 8 lcdlmod φ C LMod
25 eqid Scalar C = Scalar C
26 eqid Base Scalar C = Base Scalar C
27 25 26 13 17 12 lspsnel C LMod G F w J G g Base Scalar C w = g · ˙ G
28 24 19 27 syl2anc φ w J G g Base Scalar C w = g · ˙ G
29 1 3 15 16 7 25 26 8 lcdsbase φ Base Scalar C = B
30 29 rexeqdv φ g Base Scalar C w = g · ˙ G g B w = g · ˙ G
31 28 30 bitrd φ w J G g B w = g · ˙ G
32 31 anbi1d φ w J G z M N Y t = w R z g B w = g · ˙ G z M N Y t = w R z
33 23 32 bitr4id φ g B w = g · ˙ G z M N Y t = w R z w J G z M N Y t = w R z
34 33 exbidv φ w g B w = g · ˙ G z M N Y t = w R z w w J G z M N Y t = w R z
35 df-rex w J G z M N Y t = w R z w w J G z M N Y t = w R z
36 34 35 bitr4di φ w g B w = g · ˙ G z M N Y t = w R z w J G z M N Y t = w R z
37 eqid LSubSp C = LSubSp C
38 37 lsssssubg C LMod LSubSp C SubGrp C
39 24 38 syl φ LSubSp C SubGrp C
40 13 37 12 lspsncl C LMod G F J G LSubSp C
41 24 19 40 syl2anc φ J G LSubSp C
42 39 41 sseldd φ J G SubGrp C
43 eqid LSubSp U = LSubSp U
44 1 3 8 dvhlmod φ U LMod
45 4 43 6 lspsncl U LMod Y V N Y LSubSp U
46 44 10 45 syl2anc φ N Y LSubSp U
47 1 2 3 43 7 37 8 46 mapdcl2 φ M N Y LSubSp C
48 39 47 sseldd φ M N Y SubGrp C
49 18 11 42 48 lsmelvalm φ t J G ˙ M N Y w J G z M N Y t = w R z
50 36 49 bitr4d φ w g B w = g · ˙ G z M N Y t = w R z t J G ˙ M N Y
51 22 50 mpbird φ w g B w = g · ˙ G z M N Y t = w R z
52 ovex g · ˙ G V
53 oveq1 w = g · ˙ G w R z = g · ˙ G R z
54 53 eqeq2d w = g · ˙ G t = w R z t = g · ˙ G R z
55 54 rexbidv w = g · ˙ G z M N Y t = w R z z M N Y t = g · ˙ G R z
56 52 55 ceqsexv w w = g · ˙ G z M N Y t = w R z z M N Y t = g · ˙ G R z
57 56 rexbii g B w w = g · ˙ G z M N Y t = w R z g B z M N Y t = g · ˙ G R z
58 rexcom4 g B w w = g · ˙ G z M N Y t = w R z w g B w = g · ˙ G z M N Y t = w R z
59 57 58 bitr3i g B z M N Y t = g · ˙ G R z w g B w = g · ˙ G z M N Y t = w R z
60 51 59 sylibr φ g B z M N Y t = g · ˙ G R z