Description: Lemma for mapdpg . Baer p. 45, line 3: "infer ... the existence of a number g in G and of an element z in (Fy)* such that t = gx'-z." (We scope $d g w z ph locally to avoid clashes with later substitutions into ph .) (Contributed by NM, 18-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mapdpglem.h | |
|
mapdpglem.m | |
||
mapdpglem.u | |
||
mapdpglem.v | |
||
mapdpglem.s | |
||
mapdpglem.n | |
||
mapdpglem.c | |
||
mapdpglem.k | |
||
mapdpglem.x | |
||
mapdpglem.y | |
||
mapdpglem1.p | |
||
mapdpglem2.j | |
||
mapdpglem3.f | |
||
mapdpglem3.te | |
||
mapdpglem3.a | |
||
mapdpglem3.b | |
||
mapdpglem3.t | |
||
mapdpglem3.r | |
||
mapdpglem3.g | |
||
mapdpglem3.e | |
||
Assertion | mapdpglem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdpglem.h | |
|
2 | mapdpglem.m | |
|
3 | mapdpglem.u | |
|
4 | mapdpglem.v | |
|
5 | mapdpglem.s | |
|
6 | mapdpglem.n | |
|
7 | mapdpglem.c | |
|
8 | mapdpglem.k | |
|
9 | mapdpglem.x | |
|
10 | mapdpglem.y | |
|
11 | mapdpglem1.p | |
|
12 | mapdpglem2.j | |
|
13 | mapdpglem3.f | |
|
14 | mapdpglem3.te | |
|
15 | mapdpglem3.a | |
|
16 | mapdpglem3.b | |
|
17 | mapdpglem3.t | |
|
18 | mapdpglem3.r | |
|
19 | mapdpglem3.g | |
|
20 | mapdpglem3.e | |
|
21 | 20 | oveq1d | |
22 | 14 21 | eleqtrd | |
23 | r19.41v | |
|
24 | 1 7 8 | lcdlmod | |
25 | eqid | |
|
26 | eqid | |
|
27 | 25 26 13 17 12 | lspsnel | |
28 | 24 19 27 | syl2anc | |
29 | 1 3 15 16 7 25 26 8 | lcdsbase | |
30 | 29 | rexeqdv | |
31 | 28 30 | bitrd | |
32 | 31 | anbi1d | |
33 | 23 32 | bitr4id | |
34 | 33 | exbidv | |
35 | df-rex | |
|
36 | 34 35 | bitr4di | |
37 | eqid | |
|
38 | 37 | lsssssubg | |
39 | 24 38 | syl | |
40 | 13 37 12 | lspsncl | |
41 | 24 19 40 | syl2anc | |
42 | 39 41 | sseldd | |
43 | eqid | |
|
44 | 1 3 8 | dvhlmod | |
45 | 4 43 6 | lspsncl | |
46 | 44 10 45 | syl2anc | |
47 | 1 2 3 43 7 37 8 46 | mapdcl2 | |
48 | 39 47 | sseldd | |
49 | 18 11 42 48 | lsmelvalm | |
50 | 36 49 | bitr4d | |
51 | 22 50 | mpbird | |
52 | ovex | |
|
53 | oveq1 | |
|
54 | 53 | eqeq2d | |
55 | 54 | rexbidv | |
56 | 52 55 | ceqsexv | |
57 | 56 | rexbii | |
58 | rexcom4 | |
|
59 | 57 58 | bitr3i | |
60 | 51 59 | sylibr | |