Metamath Proof Explorer


Theorem mapdpglem3

Description: Lemma for mapdpg . Baer p. 45, line 3: "infer ... the existence of a number g in G and of an element z in (Fy)* such that t = gx'-z." (We scope $d g w z ph locally to avoid clashes with later substitutions into ph .) (Contributed by NM, 18-Mar-2015)

Ref Expression
Hypotheses mapdpglem.h H=LHypK
mapdpglem.m M=mapdKW
mapdpglem.u U=DVecHKW
mapdpglem.v V=BaseU
mapdpglem.s -˙=-U
mapdpglem.n N=LSpanU
mapdpglem.c C=LCDualKW
mapdpglem.k φKHLWH
mapdpglem.x φXV
mapdpglem.y φYV
mapdpglem1.p ˙=LSSumC
mapdpglem2.j J=LSpanC
mapdpglem3.f F=BaseC
mapdpglem3.te φtMNX˙MNY
mapdpglem3.a A=ScalarU
mapdpglem3.b B=BaseA
mapdpglem3.t ·˙=C
mapdpglem3.r R=-C
mapdpglem3.g φGF
mapdpglem3.e φMNX=JG
Assertion mapdpglem3 φgBzMNYt=g·˙GRz

Proof

Step Hyp Ref Expression
1 mapdpglem.h H=LHypK
2 mapdpglem.m M=mapdKW
3 mapdpglem.u U=DVecHKW
4 mapdpglem.v V=BaseU
5 mapdpglem.s -˙=-U
6 mapdpglem.n N=LSpanU
7 mapdpglem.c C=LCDualKW
8 mapdpglem.k φKHLWH
9 mapdpglem.x φXV
10 mapdpglem.y φYV
11 mapdpglem1.p ˙=LSSumC
12 mapdpglem2.j J=LSpanC
13 mapdpglem3.f F=BaseC
14 mapdpglem3.te φtMNX˙MNY
15 mapdpglem3.a A=ScalarU
16 mapdpglem3.b B=BaseA
17 mapdpglem3.t ·˙=C
18 mapdpglem3.r R=-C
19 mapdpglem3.g φGF
20 mapdpglem3.e φMNX=JG
21 20 oveq1d φMNX˙MNY=JG˙MNY
22 14 21 eleqtrd φtJG˙MNY
23 r19.41v gBw=g·˙GzMNYt=wRzgBw=g·˙GzMNYt=wRz
24 1 7 8 lcdlmod φCLMod
25 eqid ScalarC=ScalarC
26 eqid BaseScalarC=BaseScalarC
27 25 26 13 17 12 lspsnel CLModGFwJGgBaseScalarCw=g·˙G
28 24 19 27 syl2anc φwJGgBaseScalarCw=g·˙G
29 1 3 15 16 7 25 26 8 lcdsbase φBaseScalarC=B
30 29 rexeqdv φgBaseScalarCw=g·˙GgBw=g·˙G
31 28 30 bitrd φwJGgBw=g·˙G
32 31 anbi1d φwJGzMNYt=wRzgBw=g·˙GzMNYt=wRz
33 23 32 bitr4id φgBw=g·˙GzMNYt=wRzwJGzMNYt=wRz
34 33 exbidv φwgBw=g·˙GzMNYt=wRzwwJGzMNYt=wRz
35 df-rex wJGzMNYt=wRzwwJGzMNYt=wRz
36 34 35 bitr4di φwgBw=g·˙GzMNYt=wRzwJGzMNYt=wRz
37 eqid LSubSpC=LSubSpC
38 37 lsssssubg CLModLSubSpCSubGrpC
39 24 38 syl φLSubSpCSubGrpC
40 13 37 12 lspsncl CLModGFJGLSubSpC
41 24 19 40 syl2anc φJGLSubSpC
42 39 41 sseldd φJGSubGrpC
43 eqid LSubSpU=LSubSpU
44 1 3 8 dvhlmod φULMod
45 4 43 6 lspsncl ULModYVNYLSubSpU
46 44 10 45 syl2anc φNYLSubSpU
47 1 2 3 43 7 37 8 46 mapdcl2 φMNYLSubSpC
48 39 47 sseldd φMNYSubGrpC
49 18 11 42 48 lsmelvalm φtJG˙MNYwJGzMNYt=wRz
50 36 49 bitr4d φwgBw=g·˙GzMNYt=wRztJG˙MNY
51 22 50 mpbird φwgBw=g·˙GzMNYt=wRz
52 ovex g·˙GV
53 oveq1 w=g·˙GwRz=g·˙GRz
54 53 eqeq2d w=g·˙Gt=wRzt=g·˙GRz
55 54 rexbidv w=g·˙GzMNYt=wRzzMNYt=g·˙GRz
56 52 55 ceqsexv ww=g·˙GzMNYt=wRzzMNYt=g·˙GRz
57 56 rexbii gBww=g·˙GzMNYt=wRzgBzMNYt=g·˙GRz
58 rexcom4 gBww=g·˙GzMNYt=wRzwgBw=g·˙GzMNYt=wRz
59 57 58 bitr3i gBzMNYt=g·˙GRzwgBw=g·˙GzMNYt=wRz
60 51 59 sylibr φgBzMNYt=g·˙GRz