Metamath Proof Explorer


Theorem mapdval2N

Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 31-Jan-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdval2.h H=LHypK
mapdval2.u U=DVecHKW
mapdval2.s S=LSubSpU
mapdval2.n N=LSpanU
mapdval2.f F=LFnlU
mapdval2.l L=LKerU
mapdval2.o O=ocHKW
mapdval2.m M=mapdKW
mapdval2.k φKHLWH
mapdval2.t φTS
mapdval2.c C=gF|OOLg=Lg
Assertion mapdval2N φMT=fC|vTOLf=Nv

Proof

Step Hyp Ref Expression
1 mapdval2.h H=LHypK
2 mapdval2.u U=DVecHKW
3 mapdval2.s S=LSubSpU
4 mapdval2.n N=LSpanU
5 mapdval2.f F=LFnlU
6 mapdval2.l L=LKerU
7 mapdval2.o O=ocHKW
8 mapdval2.m M=mapdKW
9 mapdval2.k φKHLWH
10 mapdval2.t φTS
11 mapdval2.c C=gF|OOLg=Lg
12 1 2 3 5 6 7 8 9 10 11 mapdvalc φMT=fC|OLfT
13 1 2 9 dvhlmod φULMod
14 13 ad3antrrr φfCOLfLSAtomsUOLfTULMod
15 simplr φfCOLfLSAtomsUOLfTOLfLSAtomsU
16 eqid BaseU=BaseU
17 eqid LSAtomsU=LSAtomsU
18 16 4 17 islsati ULModOLfLSAtomsUvBaseUOLf=Nv
19 14 15 18 syl2anc φfCOLfLSAtomsUOLfTvBaseUOLf=Nv
20 simprr φfCOLfLSAtomsUOLfTvBaseUOLf=NvOLf=Nv
21 simplr φfCOLfLSAtomsUOLfTvBaseUOLf=NvOLfT
22 20 21 eqsstrrd φfCOLfLSAtomsUOLfTvBaseUOLf=NvNvT
23 13 adantr φfCULMod
24 23 ad3antrrr φfCOLfLSAtomsUOLfTvBaseUOLf=NvULMod
25 10 adantr φfCTS
26 25 ad3antrrr φfCOLfLSAtomsUOLfTvBaseUOLf=NvTS
27 simprl φfCOLfLSAtomsUOLfTvBaseUOLf=NvvBaseU
28 16 3 4 24 26 27 lspsnel5 φfCOLfLSAtomsUOLfTvBaseUOLf=NvvTNvT
29 22 28 mpbird φfCOLfLSAtomsUOLfTvBaseUOLf=NvvT
30 19 29 20 reximssdv φfCOLfLSAtomsUOLfTvTOLf=Nv
31 30 ex φfCOLfLSAtomsUOLfTvTOLf=Nv
32 eqid 0U=0U
33 32 3 lss0cl ULModTS0UT
34 13 10 33 syl2anc φ0UT
35 34 adantr φOLf=0U0UT
36 simpr φOLf=0UOLf=0U
37 13 adantr φOLf=0UULMod
38 32 4 lspsn0 ULModN0U=0U
39 37 38 syl φOLf=0UN0U=0U
40 36 39 eqtr4d φOLf=0UOLf=N0U
41 sneq v=0Uv=0U
42 41 fveq2d v=0UNv=N0U
43 42 rspceeqv 0UTOLf=N0UvTOLf=Nv
44 35 40 43 syl2anc φOLf=0UvTOLf=Nv
45 44 adantlr φfCOLf=0UvTOLf=Nv
46 45 a1d φfCOLf=0UOLfTvTOLf=Nv
47 9 adantr φfCKHLWH
48 11 lcfl1lem fCfFOOLf=Lf
49 48 simplbi fCfF
50 49 adantl φfCfF
51 1 7 2 32 17 5 6 47 50 dochsat0 φfCOLfLSAtomsUOLf=0U
52 31 46 51 mpjaodan φfCOLfTvTOLf=Nv
53 simp3 φfCvTOLf=NvOLf=Nv
54 23 3ad2ant1 φfCvTOLf=NvULMod
55 25 3ad2ant1 φfCvTOLf=NvTS
56 simp2 φfCvTOLf=NvvT
57 3 4 54 55 56 lspsnel5a φfCvTOLf=NvNvT
58 53 57 eqsstrd φfCvTOLf=NvOLfT
59 58 rexlimdv3a φfCvTOLf=NvOLfT
60 52 59 impbid φfCOLfTvTOLf=Nv
61 60 rabbidva φfC|OLfT=fC|vTOLf=Nv
62 12 61 eqtrd φMT=fC|vTOLf=Nv