Metamath Proof Explorer


Theorem mapen

Description: Two set exponentiations are equinumerous when their bases and exponents are equinumerous. Theorem 6H(c) of Enderton p. 139. (Contributed by NM, 16-Dec-2003) (Proof shortened by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion mapen ABCDACBD

Proof

Step Hyp Ref Expression
1 bren ABff:A1-1 ontoB
2 bren CDgg:C1-1 ontoD
3 exdistrv fgf:A1-1 ontoBg:C1-1 ontoDff:A1-1 ontoBgg:C1-1 ontoD
4 ovexd f:A1-1 ontoBg:C1-1 ontoDACV
5 ovexd f:A1-1 ontoBg:C1-1 ontoDBDV
6 elmapi xACx:CA
7 f1of f:A1-1 ontoBf:AB
8 7 adantr f:A1-1 ontoBg:C1-1 ontoDf:AB
9 fco f:ABx:CAfx:CB
10 8 9 sylan f:A1-1 ontoBg:C1-1 ontoDx:CAfx:CB
11 f1ocnv g:C1-1 ontoDg-1:D1-1 ontoC
12 11 adantl f:A1-1 ontoBg:C1-1 ontoDg-1:D1-1 ontoC
13 f1of g-1:D1-1 ontoCg-1:DC
14 12 13 syl f:A1-1 ontoBg:C1-1 ontoDg-1:DC
15 14 adantr f:A1-1 ontoBg:C1-1 ontoDx:CAg-1:DC
16 10 15 fcod f:A1-1 ontoBg:C1-1 ontoDx:CAfxg-1:DB
17 16 ex f:A1-1 ontoBg:C1-1 ontoDx:CAfxg-1:DB
18 6 17 syl5 f:A1-1 ontoBg:C1-1 ontoDxACfxg-1:DB
19 f1ofo f:A1-1 ontoBf:AontoB
20 19 adantr f:A1-1 ontoBg:C1-1 ontoDf:AontoB
21 forn f:AontoBranf=B
22 20 21 syl f:A1-1 ontoBg:C1-1 ontoDranf=B
23 vex fV
24 23 rnex ranfV
25 22 24 eqeltrrdi f:A1-1 ontoBg:C1-1 ontoDBV
26 f1ofo g:C1-1 ontoDg:ContoD
27 26 adantl f:A1-1 ontoBg:C1-1 ontoDg:ContoD
28 forn g:ContoDrang=D
29 27 28 syl f:A1-1 ontoBg:C1-1 ontoDrang=D
30 vex gV
31 30 rnex rangV
32 29 31 eqeltrrdi f:A1-1 ontoBg:C1-1 ontoDDV
33 25 32 elmapd f:A1-1 ontoBg:C1-1 ontoDfxg-1BDfxg-1:DB
34 18 33 sylibrd f:A1-1 ontoBg:C1-1 ontoDxACfxg-1BD
35 elmapi yBDy:DB
36 f1ocnv f:A1-1 ontoBf-1:B1-1 ontoA
37 36 adantr f:A1-1 ontoBg:C1-1 ontoDf-1:B1-1 ontoA
38 f1of f-1:B1-1 ontoAf-1:BA
39 37 38 syl f:A1-1 ontoBg:C1-1 ontoDf-1:BA
40 39 adantr f:A1-1 ontoBg:C1-1 ontoDy:DBf-1:BA
41 id y:DBy:DB
42 f1of g:C1-1 ontoDg:CD
43 42 adantl f:A1-1 ontoBg:C1-1 ontoDg:CD
44 fco y:DBg:CDyg:CB
45 41 43 44 syl2anr f:A1-1 ontoBg:C1-1 ontoDy:DByg:CB
46 40 45 fcod f:A1-1 ontoBg:C1-1 ontoDy:DBf-1yg:CA
47 46 ex f:A1-1 ontoBg:C1-1 ontoDy:DBf-1yg:CA
48 35 47 syl5 f:A1-1 ontoBg:C1-1 ontoDyBDf-1yg:CA
49 f1odm f:A1-1 ontoBdomf=A
50 49 adantr f:A1-1 ontoBg:C1-1 ontoDdomf=A
51 23 dmex domfV
52 50 51 eqeltrrdi f:A1-1 ontoBg:C1-1 ontoDAV
53 f1odm g:C1-1 ontoDdomg=C
54 53 adantl f:A1-1 ontoBg:C1-1 ontoDdomg=C
55 30 dmex domgV
56 54 55 eqeltrrdi f:A1-1 ontoBg:C1-1 ontoDCV
57 52 56 elmapd f:A1-1 ontoBg:C1-1 ontoDf-1ygACf-1yg:CA
58 48 57 sylibrd f:A1-1 ontoBg:C1-1 ontoDyBDf-1ygAC
59 coass ff-1yg=ff-1yg
60 f1ococnv2 f:A1-1 ontoBff-1=IB
61 60 ad2antrr f:A1-1 ontoBg:C1-1 ontoDx:CAy:DBff-1=IB
62 61 coeq1d f:A1-1 ontoBg:C1-1 ontoDx:CAy:DBff-1yg=IByg
63 45 adantrl f:A1-1 ontoBg:C1-1 ontoDx:CAy:DByg:CB
64 fcoi2 yg:CBIByg=yg
65 63 64 syl f:A1-1 ontoBg:C1-1 ontoDx:CAy:DBIByg=yg
66 62 65 eqtrd f:A1-1 ontoBg:C1-1 ontoDx:CAy:DBff-1yg=yg
67 59 66 eqtr3id f:A1-1 ontoBg:C1-1 ontoDx:CAy:DBff-1yg=yg
68 67 eqeq2d f:A1-1 ontoBg:C1-1 ontoDx:CAy:DBfx=ff-1ygfx=yg
69 coass fxg-1g=fxg-1g
70 f1ococnv1 g:C1-1 ontoDg-1g=IC
71 70 ad2antlr f:A1-1 ontoBg:C1-1 ontoDx:CAy:DBg-1g=IC
72 71 coeq2d f:A1-1 ontoBg:C1-1 ontoDx:CAy:DBfxg-1g=fxIC
73 10 adantrr f:A1-1 ontoBg:C1-1 ontoDx:CAy:DBfx:CB
74 fcoi1 fx:CBfxIC=fx
75 73 74 syl f:A1-1 ontoBg:C1-1 ontoDx:CAy:DBfxIC=fx
76 72 75 eqtrd f:A1-1 ontoBg:C1-1 ontoDx:CAy:DBfxg-1g=fx
77 69 76 eqtrid f:A1-1 ontoBg:C1-1 ontoDx:CAy:DBfxg-1g=fx
78 77 eqeq2d f:A1-1 ontoBg:C1-1 ontoDx:CAy:DByg=fxg-1gyg=fx
79 eqcom yg=fxfx=yg
80 78 79 bitrdi f:A1-1 ontoBg:C1-1 ontoDx:CAy:DByg=fxg-1gfx=yg
81 68 80 bitr4d f:A1-1 ontoBg:C1-1 ontoDx:CAy:DBfx=ff-1ygyg=fxg-1g
82 f1of1 f:A1-1 ontoBf:A1-1B
83 82 ad2antrr f:A1-1 ontoBg:C1-1 ontoDx:CAy:DBf:A1-1B
84 simprl f:A1-1 ontoBg:C1-1 ontoDx:CAy:DBx:CA
85 46 adantrl f:A1-1 ontoBg:C1-1 ontoDx:CAy:DBf-1yg:CA
86 cocan1 f:A1-1Bx:CAf-1yg:CAfx=ff-1ygx=f-1yg
87 83 84 85 86 syl3anc f:A1-1 ontoBg:C1-1 ontoDx:CAy:DBfx=ff-1ygx=f-1yg
88 27 adantr f:A1-1 ontoBg:C1-1 ontoDx:CAy:DBg:ContoD
89 ffn y:DByFnD
90 89 ad2antll f:A1-1 ontoBg:C1-1 ontoDx:CAy:DByFnD
91 16 adantrr f:A1-1 ontoBg:C1-1 ontoDx:CAy:DBfxg-1:DB
92 91 ffnd f:A1-1 ontoBg:C1-1 ontoDx:CAy:DBfxg-1FnD
93 cocan2 g:ContoDyFnDfxg-1FnDyg=fxg-1gy=fxg-1
94 88 90 92 93 syl3anc f:A1-1 ontoBg:C1-1 ontoDx:CAy:DByg=fxg-1gy=fxg-1
95 81 87 94 3bitr3d f:A1-1 ontoBg:C1-1 ontoDx:CAy:DBx=f-1ygy=fxg-1
96 95 ex f:A1-1 ontoBg:C1-1 ontoDx:CAy:DBx=f-1ygy=fxg-1
97 6 35 96 syl2ani f:A1-1 ontoBg:C1-1 ontoDxACyBDx=f-1ygy=fxg-1
98 4 5 34 58 97 en3d f:A1-1 ontoBg:C1-1 ontoDACBD
99 98 exlimivv fgf:A1-1 ontoBg:C1-1 ontoDACBD
100 3 99 sylbir ff:A1-1 ontoBgg:C1-1 ontoDACBD
101 1 2 100 syl2anb ABCDACBD