Metamath Proof Explorer


Theorem meascnbl

Description: A measure is continuous from below. Cf. volsup . (Contributed by Thierry Arnoux, 18-Jan-2017) (Revised by Thierry Arnoux, 11-Jul-2017)

Ref Expression
Hypotheses meascnbl.0 J = TopOpen 𝑠 * 𝑠 0 +∞
meascnbl.1 φ M measures S
meascnbl.2 φ F : S
meascnbl.3 φ n F n F n + 1
Assertion meascnbl φ M F t J M ran F

Proof

Step Hyp Ref Expression
1 meascnbl.0 J = TopOpen 𝑠 * 𝑠 0 +∞
2 meascnbl.1 φ M measures S
3 meascnbl.2 φ F : S
4 meascnbl.3 φ n F n F n + 1
5 2 adantr φ n M measures S
6 measbase M measures S S ran sigAlgebra
7 2 6 syl φ S ran sigAlgebra
8 7 adantr φ n S ran sigAlgebra
9 3 ffvelrnda φ n F n S
10 simpll φ n k 1 ..^ n φ
11 fzossnn 1 ..^ n
12 simpr φ n k 1 ..^ n k 1 ..^ n
13 11 12 sseldi φ n k 1 ..^ n k
14 3 ffvelrnda φ k F k S
15 10 13 14 syl2anc φ n k 1 ..^ n F k S
16 15 ralrimiva φ n k 1 ..^ n F k S
17 sigaclfu2 S ran sigAlgebra k 1 ..^ n F k S k 1 ..^ n F k S
18 8 16 17 syl2anc φ n k 1 ..^ n F k S
19 difelsiga S ran sigAlgebra F n S k 1 ..^ n F k S F n k 1 ..^ n F k S
20 8 9 18 19 syl3anc φ n F n k 1 ..^ n F k S
21 measvxrge0 M measures S F n k 1 ..^ n F k S M F n k 1 ..^ n F k 0 +∞
22 5 20 21 syl2anc φ n M F n k 1 ..^ n F k 0 +∞
23 fveq2 n = o F n = F o
24 oveq2 n = o 1 ..^ n = 1 ..^ o
25 24 iuneq1d n = o k 1 ..^ n F k = k 1 ..^ o F k
26 23 25 difeq12d n = o F n k 1 ..^ n F k = F o k 1 ..^ o F k
27 26 fveq2d n = o M F n k 1 ..^ n F k = M F o k 1 ..^ o F k
28 fveq2 n = p F n = F p
29 oveq2 n = p 1 ..^ n = 1 ..^ p
30 29 iuneq1d n = p k 1 ..^ n F k = k 1 ..^ p F k
31 28 30 difeq12d n = p F n k 1 ..^ n F k = F p k 1 ..^ p F k
32 31 fveq2d n = p M F n k 1 ..^ n F k = M F p k 1 ..^ p F k
33 1 22 27 32 esumcvg2 φ i * n = 1 i M F n k 1 ..^ n F k t J * n M F n k 1 ..^ n F k
34 measfrge0 M measures S M : S 0 +∞
35 2 34 syl φ M : S 0 +∞
36 fcompt M : S 0 +∞ F : S M F = i M F i
37 35 3 36 syl2anc φ M F = i M F i
38 nfcv _ n F k
39 fveq2 n = k F n = F k
40 simpr φ i i
41 40 nnzd φ i i
42 fzval3 i 1 i = 1 ..^ i + 1
43 41 42 syl φ i 1 i = 1 ..^ i + 1
44 43 olcd φ i 1 i = 1 i = 1 ..^ i + 1
45 2 adantr φ i M measures S
46 simpll φ i n 1 i φ
47 fzossnn 1 ..^ i + 1
48 43 eleq2d φ i n 1 i n 1 ..^ i + 1
49 48 biimpa φ i n 1 i n 1 ..^ i + 1
50 47 49 sseldi φ i n 1 i n
51 46 50 9 syl2anc φ i n 1 i F n S
52 38 39 44 45 51 measiuns φ i M n = 1 i F n = * n = 1 i M F n k 1 ..^ n F k
53 3 ffnd φ F Fn
54 53 4 iuninc φ i n = 1 i F n = F i
55 54 fveq2d φ i M n = 1 i F n = M F i
56 52 55 eqtr3d φ i * n = 1 i M F n k 1 ..^ n F k = M F i
57 56 mpteq2dva φ i * n = 1 i M F n k 1 ..^ n F k = i M F i
58 37 57 eqtr4d φ M F = i * n = 1 i M F n k 1 ..^ n F k
59 9 ralrimiva φ n F n S
60 dfiun2g n F n S n F n = x | n x = F n
61 59 60 syl φ n F n = x | n x = F n
62 fnrnfv F Fn ran F = x | n x = F n
63 53 62 syl φ ran F = x | n x = F n
64 63 unieqd φ ran F = x | n x = F n
65 61 64 eqtr4d φ n F n = ran F
66 65 fveq2d φ M n F n = M ran F
67 eqidd φ =
68 67 orcd φ = = 1 ..^ i + 1
69 38 39 68 2 9 measiuns φ M n F n = * n M F n k 1 ..^ n F k
70 66 69 eqtr3d φ M ran F = * n M F n k 1 ..^ n F k
71 33 58 70 3brtr4d φ M F t J M ran F