Metamath Proof Explorer


Theorem measinb

Description: Building a measure restricted to the intersection with a given set. (Contributed by Thierry Arnoux, 25-Dec-2016)

Ref Expression
Assertion measinb M measures S A S x S M x A measures S

Proof

Step Hyp Ref Expression
1 simpll M measures S A S x S M measures S
2 measbase M measures S S ran sigAlgebra
3 2 ad2antrr M measures S A S x S S ran sigAlgebra
4 simpr M measures S A S x S x S
5 simplr M measures S A S x S A S
6 inelsiga S ran sigAlgebra x S A S x A S
7 3 4 5 6 syl3anc M measures S A S x S x A S
8 measvxrge0 M measures S x A S M x A 0 +∞
9 1 7 8 syl2anc M measures S A S x S M x A 0 +∞
10 9 fmpttd M measures S A S x S M x A : S 0 +∞
11 eqidd M measures S A S x S M x A = x S M x A
12 ineq1 x = x A = A
13 0in A =
14 12 13 eqtrdi x = x A =
15 14 fveq2d x = M x A = M
16 15 adantl M measures S A S x = M x A = M
17 measvnul M measures S M = 0
18 17 ad2antrr M measures S A S x = M = 0
19 16 18 eqtrd M measures S A S x = M x A = 0
20 2 adantr M measures S A S S ran sigAlgebra
21 0elsiga S ran sigAlgebra S
22 20 21 syl M measures S A S S
23 0red M measures S A S 0
24 11 19 22 23 fvmptd M measures S A S x S M x A = 0
25 measinblem M measures S A S z 𝒫 S z ω Disj y z y M z A = * y z M y A
26 eqidd M measures S A S z 𝒫 S z ω Disj y z y x S M x A = x S M x A
27 ineq1 x = z x A = z A
28 27 adantl M measures S A S z 𝒫 S z ω Disj y z y x = z x A = z A
29 28 fveq2d M measures S A S z 𝒫 S z ω Disj y z y x = z M x A = M z A
30 simplll M measures S A S z 𝒫 S z ω Disj y z y M measures S
31 30 2 syl M measures S A S z 𝒫 S z ω Disj y z y S ran sigAlgebra
32 simplr M measures S A S z 𝒫 S z ω Disj y z y z 𝒫 S
33 simprl M measures S A S z 𝒫 S z ω Disj y z y z ω
34 sigaclcu S ran sigAlgebra z 𝒫 S z ω z S
35 31 32 33 34 syl3anc M measures S A S z 𝒫 S z ω Disj y z y z S
36 simpllr M measures S A S z 𝒫 S z ω Disj y z y A S
37 inelsiga S ran sigAlgebra z S A S z A S
38 31 35 36 37 syl3anc M measures S A S z 𝒫 S z ω Disj y z y z A S
39 measvxrge0 M measures S z A S M z A 0 +∞
40 30 38 39 syl2anc M measures S A S z 𝒫 S z ω Disj y z y M z A 0 +∞
41 26 29 35 40 fvmptd M measures S A S z 𝒫 S z ω Disj y z y x S M x A z = M z A
42 eqidd M measures S A S z 𝒫 S y z x S M x A = x S M x A
43 ineq1 x = y x A = y A
44 43 adantl M measures S A S z 𝒫 S y z x = y x A = y A
45 44 fveq2d M measures S A S z 𝒫 S y z x = y M x A = M y A
46 elpwi z 𝒫 S z S
47 46 ad2antlr M measures S A S z 𝒫 S y z z S
48 simpr M measures S A S z 𝒫 S y z y z
49 47 48 sseldd M measures S A S z 𝒫 S y z y S
50 simplll M measures S A S z 𝒫 S y z M measures S
51 50 2 syl M measures S A S z 𝒫 S y z S ran sigAlgebra
52 simpllr M measures S A S z 𝒫 S y z A S
53 inelsiga S ran sigAlgebra y S A S y A S
54 51 49 52 53 syl3anc M measures S A S z 𝒫 S y z y A S
55 measvxrge0 M measures S y A S M y A 0 +∞
56 50 54 55 syl2anc M measures S A S z 𝒫 S y z M y A 0 +∞
57 42 45 49 56 fvmptd M measures S A S z 𝒫 S y z x S M x A y = M y A
58 57 esumeq2dv M measures S A S z 𝒫 S * y z x S M x A y = * y z M y A
59 58 adantr M measures S A S z 𝒫 S z ω Disj y z y * y z x S M x A y = * y z M y A
60 25 41 59 3eqtr4d M measures S A S z 𝒫 S z ω Disj y z y x S M x A z = * y z x S M x A y
61 60 ex M measures S A S z 𝒫 S z ω Disj y z y x S M x A z = * y z x S M x A y
62 61 ralrimiva M measures S A S z 𝒫 S z ω Disj y z y x S M x A z = * y z x S M x A y
63 ismeas S ran sigAlgebra x S M x A measures S x S M x A : S 0 +∞ x S M x A = 0 z 𝒫 S z ω Disj y z y x S M x A z = * y z x S M x A y
64 20 63 syl M measures S A S x S M x A measures S x S M x A : S 0 +∞ x S M x A = 0 z 𝒫 S z ω Disj y z y x S M x A z = * y z x S M x A y
65 10 24 62 64 mpbir3and M measures S A S x S M x A measures S